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Abstract

When a C programmer needs an efficient data structure for a particular prob-
lem, he or she can often simply look one up in any of a number of good text-
books or handbooks. Unfortunately, programmers in functional languages such
as Standard ML or Haskell do not have this luxury. Although some data struc-
tures designed for imperative languages such as C can be quite easily adapted to
functional setting, most cannot, usually because they depend in crucial ways on as-
signments, which are disallowed, or at least discouraged, in functional languages
To address this imbalance, we describe several techniques for designing fuinctiona
data structures, and numerous original data structures based on these techniques,
including multiple variations of lists, queues, double-ended queues, and heaps,
many supporting more exotic features such as random access or efficient catena-
tion.

In addition, we expose the fundamental role of lazy evaluatioanmortized
functional data structures. Traditional methods of amortization break down when
old versions of a data structure, not just the most recent, are available floerfur
processing. This property is known gsrsistenceand is taken for granted in
functional languages. On the surface, persistence and amortization appear to be
incompatible, but we show how lazy evaluation can be used to resolve thisctonfli
yielding amortized data structures that are efficient even when usedtpetk.
Turning this relationship between lazy evaluation and amortization around, the
notion of amortization also provides the first practical techniques for analylzeng
time requirements of non-trivial lazy programs.

Finally, our data structures offer numerous hints to programming language de-
signers, illustrating the utility of combining strict and lazy evaluatioraisingle
language, and providing non-trivial examples using polymorphic recursion and
higher-order, recursive modules.
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Chapter 1

Introduction

Efficient data structures have been studied extensively for over thirtg yessulting in a vast
literature from which the knowledgeable programmer can extract efficieatisos to a stun-

ning variety of problems. Much of this literature purports to be language-independgnt, b
unfortunately it is language-independent only in the sense of Henry Ford: Programmers ca
use any language they want, as long as it's imperati@nly a small fraction of existing
data structures are suitable for implementation in functional languages, s\8taredard ML

or Haskell. This thesis addresses this imbalance by specifically consideamiesign and
analysis of functional data structures.

1.1 Functional vs. Imperative Data Structures

The methodological benefits of functional languages are well known [Bac78, Hug89, HJ94],
but still the vast majority of programs are written in imperative langsagigch as C. This
apparent contradiction is easily explained by the fact that functional languagekisawically
been slower than their more traditional cousins, but this gap is narrowingebsige advances
have been made across a wide front, from basic compiler technology to sophistioatgses
and optimizations. However, there is one aspect of functional programming thahouna
of cleverness on the part of the compiler writer is likely to mitigate — the afsinferior or
inappropriate data structures. Unfortunately, the existing literature thets/edy little advice
to offer on this subject.

Why should functional data structures be any more difficult to design and implehsent t

imperative ones? There are two basic problems. First, from the point of views@frdeg and
implementing efficient data structures, functional programming’s strictgaenat destructive

IHenry Ford once said of the available colors for his Model Toeobile, “[Customers] can have any color
they want, as long as it's black.”
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updates (assignments) is a staggering handicap, tantamount to confiscating rachref&e
knives. Like knives, destructive updates can be dangerous when misused, but tredyendous
effective when used properly. Imperative data structures often relyssigranents in crucial
ways, and so different solutions must be found for functional programs.

The second difficulty is that functional data structures are expected to be exbddithan
their imperative counterparts. In particular, when we update an imperdé#ta structure we
typically accept that the old version of the data structure will no longer bésdbaj but, when
we update a functional data structure, we expect that both the old and new versions of the
data structure will be available for further processing. A data structuresthgdorts multiple
versions is callegbersistentwhile a data structure that allows only a single version at a time
is calledephemera[DSST89]. Functional programming languages have the curious property
that all data structures are automatically persistent. Imperative datalgtegcare typically
ephemeral, but when a persistent data structure is required, imperativaqrogrs are not
surprised if the persistent data structure is more complicated and perlepasmptotically
less efficient than an equivalent ephemeral data structure.

Furthermore, theoreticians have established lower bounds suggesting that funmtiena
gramming languages may be fundamentally less efficient than imperative lasgnaggeme
situations [BAG92, Pip96]. In spite of all these points, this thesis shows tisadftien possible
to devise functional data structures that are asymptotically as efficighedsest imperative
solutions.

1.2 Strictvs. Lazy Evaluation

Most (sequential) functional programming languages can be classified asstiitteor lazy,
according to their order of evaluation. Which is superior is a topic debated &litliaus fervor
by functional programmers. The difference between the two evaluation ordecstapparent
in their treatment of arguments to functions. In strict languages, the argutoeeatsinction
are evaluated before the body of the function. In lazy languages, arguments arateyal
in a demand-driven fashion; they are initially passed in unevaluated forna@nevaluated
only when (and if!) the computation needs the results to continue. Furthermore, gh@na
argument is evaluated, the value of that argument is cached so that if itisemaed again, it
can be looked up rather than recomputed. This caching is knowreamizatioriMic68].

Each evaluation order has its advantages and disadvantages, but stuatiewak clearly
superior in at least one area: ease of reasoning about asymptotic complexityictltas-
guages, exactly which subexpressions will be evaluated, and when, is for the niastrpar
tactically apparent. Thus, reasoning about the running time of a given progranatiseis
straightforward. However, in lazy languages, even experts frequentlydiffeailty predicting
when, or even if, a given subexpression will be evaluated. Programmers iragimges
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Name Running Times of Supported Functions Page
banker’s queues snoclheadltail: O(1) 26
physicist’s queues snoclheadltail: O(1) 31
real-time queues snoclheadltail: O(1)1 43
bootstrapped queues head: O(1)T, snocltail: O(log* n) 89
implicit queues snoclheadltail: O(1) 113
banker’s deques conslheadltaill snocllastlinit: O(1) 56
real-time deques conslheadltaillsnocllastlinit: O(1)T 59
implicit deques conslheadltaill snocllastlinit: O(1) 116
catenable lists conslsnoclheadltaill+: O(1) 97
simple catenable deques conslheadltaill snocllastlinit: O(1), +: O(logn) 119
catenable deques conslheadltaill snocllastlinit/+: O(1) 122
skew-binary random-access listsons/head/tail: O (1), lookuplupdate : O(log n)T 79
skew binomial heaps insert: O (1)1, mergelfindMinldelete Min : O(logn)T 83
bootstrapped heaps insert/mergel findMin: O(1)1, deleteMin: O(logn)T | 102
sortable collections add: O(logn), sort: O(n) 35
scheduled sortable collections| add: O(logn)T, sort: O(n)t 47

Worst-case running times marked withAll other running times are amortized.

Table 1.1: Summary of Implementations

are often reduced to pretending the language is actually strict to make ex&negtimates of
running time!

Both evaluation orders have implications for the design and analysis of datausdgicAs
we will see in Chapters 3 and 4, strict languages can describe worst-¢astrdatures, but not
amortized ones, and lazy languages can describe amortized data strumitined,worst-case
ones. To be able to describe both kinds of data structures, we need a programming language
that supports both evaluation orders. Fortunately, combining strict and lahya&wea in a
single language is not difficult. Chapter 2 descriamtation — a convenient way of adding
lazy evaluation to an otherwise strict language (in this case, Standaxd M

1.3 Contributions

This thesis makes contributions in three major areas:

e Functional programming.Besides developing a suite of efficient data structures that
are useful in their own right (see Table 1.1), we also describe general appsotT
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designing and analyzing functional data structures, including powerful new techniques
for reasoning about the running time of lazy programs.

e Persistent data structuredJntil this research, it was widely believed that amortization

was incompatible with persistence [DST94, Ram92]. However, we show &rabma-

tion, in the form of lazy evaluation, is the key to reconciling the two. Furtheemas
noted by Kaplan and Tarjan [KT96b], functional programming is a convenient medium
for developing new persistent data structures, even when the data strudtieeantu-

ally be implemented in an imperative language. The data structures andgieesimm

this thesis can easily be adapted to imperative languages for those sitwatiensan
imperative programmer needs a persistent data structure.

¢ Programming language desigfunctional programmers have long debated the relative
merits of strict and lazy evaluation. This thesis shows that both are edgodally im-
portant and suggests that the ideal functional language should seamlessly intedrate bot
As a modest step in this direction, we prop@seotation, which allows the use of lazy
evaluation in a strict language with a minimum of syntactic overhead.

1.4 Source Language

All source code will be presented in Standard ML [MTH90], extended with prestfor
lazy evaluation. However, the algorithms can all easily be translatedginy other functional
language supporting both strict and lazy evaluation. Programmers in functional ¢gsgua
that are either entirely strict or entirely lazy will be able to use sobut not all, of the data
structures in this thesis.

In Chapters 7 and 8, we will encounter several recursive data structuteséhdifficult to
describe cleanly in Standard ML because of the language'’s restrictions agatast sophisti-
cated and difficult-to-implement forms of recursion, such as polymorphic recussid recur-
sive modules. When this occurs, we will first sacrifice executabilitgfarty and describe the
data structures using ML-like pseudo-code incorporating the desired forms oficgcurken,
we will show how to convert the given implementations to legal StandardiMiese examples
should be regarded as challenges to the language design community to provide a programming
language capable of economically describing the appropriate abstractions.

1.5 Terminology

Any discussion of data structures is fraught with the potential for confusion, betagiserm
data structurehas at least four distinct, but related, meanings.
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¢ An abstract data type (that is, a type and a collection of functions on that. tyyevill
refer to this as aabstraction

e A concrete realization of an abstract data typ&e will refer to this as amimplementa-
tion, but note that an implementation need not be actualized as code — a concrete design
is sufficient.

¢ An instance of a data type, such as a particular list or tré&e will refer to such an
instance generically as abjector aversion However, particular data types typically
have their own nomenclature. For example, we will refer to stack or queuesbjeply
as stacks or queues.

¢ A unique identity that is invariant under updategor example, in a stack-based in-
terpreter, we often speak informally about “the stack” as if there were onéystack,
rather than different versions at different times. We will refer t@ identity as gersis-
tent identity This issue mainly arises in the context of persistent data structures; when
we speak of different versions of the same data structure, we mean that féverdif
versions share a common persistent identity.

Roughly speaking, abstractions correspond to signatures in Standard ML, implearenta
to structures or functors, and objects or versions to values. There is no good anfogue
persistent identities in Standard ML.

The termoperationis similarly overloaded, meaning both the functions supplied by an
abstract data type and applications of those functions. We reserve theperationfor the
latter meaning, and use the terpygeratoror functionfor the former.

1.6 Overview

This thesis is structured in two parts. The first part (Chapters 2—4) condgorglamic aspects
of lazy evaluation. Chapter 2 sets the stage by briefly reviewing the basicptermielazy
evaluation and introducing-notation.

Chapter 3 is the foundation upon which the rest of the thesis is built. It deschbes t
mediating role lazy evaluation plays in combining amortization and pensisf@and gives two
methods for analyzing the amortized cost of data structures implementecaytivaluation.

Chapter 4 illustrates the power of combining strict and lazy evaluatiosinge language.
It describes how one can often derive a worst-case data structure fromoatizach data struc-
ture by systematically scheduling the premature execution of lazy components.

2The persistent identity of an ephemeral data structure eamrified as a reference cell, but this is insufficient
for modelling the persistent identity of a persistent dataciure.
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The second part of the thesis (Chapters 5-8) concerns the design of functional data struc-
tures. Rather than cataloguing efficient data structures for every purpose (aedsjask!), we
instead concentrate on a handful of general techniques for designing efficient fundtbaal
structures and illustrate each technique with one or more implementations ofrienti ab-
stractions such as priority queues, random-access structures, and vasiorsdfssequences.

Chapter 5 describdazy rebuilding a lazy variant ofglobal rebuilding[Ove83]. Lazy re-
building is significantly simpler than global rebuilding, but yields amortizedeathan worst-
case bounds. By combining lazy rebuilding with the scheduling techniques of Chapter 4, the
worst-case bounds can be recovered.

Chapter 6 exploresumerical representationgmplementations designed in analogy to rep-
resentations of numbers (typically binary numbers). In this model, designingeetfinsertion
and deletion routines corresponds to choosing variants of binary numbers in which adding or
subtracting one take constant time.

Chapter 7 examinesata-structural bootstrappinfBuc93]. Data-structural bootstrapping
comes in two flavorsstructural decompositignn which unbounded solutions are bootstrapped
from bounded solutions, anstructural abstraction in which efficient solutions are boot-
strapped from inefficient solutions.

Chapter 8 describamplicit recursive slowdowa lazy variant of theecursive-slowdown
technique of Kaplan and Tarjan [KT95]. As with lazy rebuilding, implicituesve slowdown
is significantly simpler than recursive slowdown, but yields amortizéloerathan worst-case
bounds. Again, we can recover the worst-case bounds using scheduling.

Finally, Chapter 9 concludes by summarizing the implications of this work on fomati
programming, on persistent data structures, and on programming language design, and by
describing some of the open problems related to this thesis.



Chapter 2

Lazy Evaluation and $-Notation

Lazy evaluation is an evaluation strategy employed by many purely functimogtamming
languages, such as Haskell[BR]. This strategy has two essential properties. First, the evalu-
ation of a given expression is delayed soispendeduntil its result is needed. Second, the first
time a suspended expression is evaluated, the resukmsoizedi.e., cached) so that the next
time it is needed, it can be looked up rather than recomputed.

Supporting lazy evaluation in a strict language such as Standard ML requingsritwi-
tives: one to suspend the evaluation of an expression and one to resume thaavaluat
suspended expression (and memoize the result). These primitives areaiféeh/elay and
force. For example, Standard ML of New Jersey offers the following primiticeddzy eval-
uation:

type a susp
val delay : (unit— «) — « susp
val force : a susp— «

These primitives are sufficient to encode all the algorithms in this themgever, program-
ming with these primitives can be rather inconvenient. For instance, peesdghe evaluation
of some expressioa, one writesdelay (fn () = ¢). Depending on the use of whitespace, this
introduces an overhead of 13-17 characters! Although acceptable when only a fessexpse
are to be suspended, this overhead quickly becomes intolerable when many exisrassst
be delayed.

To make suspending an expression as syntactically lightweight as possibleieeglinse
$-notation — to suspend the evaluation of some expressiae simply write$e. $¢ is called
asuspensiornd has type susp, wherer is the type ok. The scope of th& operator extends
as far to the right as possible. Thus, for exam@#g,» parses a$(/ ) rather than §f) =
and$z+y parses a$(z+y) rather than$z)+y. Note that$e is itself an expression and can be
suspended by writin§$e, yielding a nested suspension of typeusp susp.
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If s is a suspension of type susp, thenforce s evaluates and memoizes the contents of

s and returns the resulting value of type However, explicitly forcing a suspension with a
force operation can also be inconvenient. In particular, it often interacts peoottypattern
matching, requiring a singlezse expression to be broken into two or more nestesk ex-
pressions, interspersed withrce operations. To avoid this problem, we integr&taotation
with pattern matching. Matching a suspension against a pattern of thebfofinst forces the
suspension and then matches the result againat times, an explicitforce operator is still
useful. However, it can now be defined in term$gfatterns.

fun force $z) = 2

To compare the two notations, consider the standake function, which extracts the first
elements of a stream. Streams are defined as follows:

datatype o StreamCell = Nil| Consof o x « Stream
withtype « Stream =« StreamCell susp

Using delay andforce, take would be written

fun take (n, s) =
delay (fn ()= casen of
0= Nil
| — = caseforces of
Nil = Nil
| Cons (, s’) = Cons (, take (@—1, s')))

In contrast, using-notation,take can be written more concisely as

fun take (2, s) = $case(n, s) of
(0, ) = Nil
| (_, $Nil) = Nil
| (, $Cons ¢, s')) = Cons , take (@—1, 5'))

In fact, it is tempting to write¢ake even more concisely as

fun take (0,_) = $Nil
| take (, $Nil) = $Nil
| take (2, $Cons (7, s)) = $Cons (¢, take (@—1, s))

However, this third implementation is not equivalent to the first two. Itigalar, it forces its
second argument whenke is applied, rather than when the resulting stream is forced.

The syntax and semantics $iotation are formally defined in Appendix A.
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2.1 Streams

As an extended example of lazy evaluation &uaotation in Standard ML, we next develop
a small streams package. These streams will also be used by sevéraldaita structures in
subsequent chapters.

Streams (also known as lazy lists) are very similar to ordinatg,lisxcept that every cell
is systematically suspended. The type of streams is

datatype o StreamCell = Nil| Consof o x « Stream
withtype « Stream =« StreamCell susp

A simple stream containing the elements 1, 2, and 3 could be written

$Cons (1,$Cons (2 $Cons (3 3Nil)))

It is illuminating to contrast streams with simple suspended lists of typet susp. The
computations represented by the latter type are inherardholithic— once begun by forcing
the suspended list, they run to completion. The computations represented bysstoeatime
other hand, are oftemcremental— forcing a stream executes only enough of the computation
to produce the outermost cell and suspends the rest. This behavior is common amongslatatype
such as streams that contain nested suspensions.

To see this difference in behavior more clearly, consider the append functidtervri
t. On suspended lists, this function might be written

fun s # ¢ = $(forces @ forcet)

Once begun, this function forces both its arguments and then appends the two lists,myoduci
the entire result. Hence, this function is monolithic. On streams, the appantidn is written

fun s #+ ¢ = $cases of
$Nil = forcet
| $Cons (¢, s') = Cons (¢, s’ +# )

Once begun, this function forces the first celkqby matching against & pattern). If this cell
is Nil, then the first cell of the result is the first cell Qfso the function forces. Otherwise,
the function constructs the first cell of the result from the first elementarid — this is the
key point — the suspension that will eventually calculate the rest of the appestddénce,
this function is incremental. Theke function described earlier is similarly incremental.

However, consider the function to drop the fitselements of a stream.

fun drop (n, s) = let fun drop (0, s") = force s’
| drog (n, $Nil) = Nil
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| drog (n, $Cons ¢, s')) = drog (n—1, s')
in $drogd (n, s) end

This function is monolithic because the recursive callgitep’ are never delayed — calcu-
lating the first cell of the result requires executing the entire drop functioratider common
monolithic stream function igeverse.

fun reverses = let fun reversé($Nil, r) = r
| reversé($Cons ¢, s), r) = reversé(s, Cons (¢, $r))
in $reversé(s, Nil) end

Here the recursive calls taverse’ are never delayed, but note that each recursive call creates
a new suspension of the for@r. It might seem then thateverse does not in fact do all

of its work at once. However, suspensions such as these, whose bodies aretimamaiigss

(i.e., composed entirely of constructors and variables, with no functioncioins), are called
trivial. A good compiler would create these suspensions in already-memoized formehut ev
if the compiler does not perform this optimization, trivial suspensions alwaysateainO(1)

time.

Although monolithic stream functions such @®p andreverse are common, incremental
functions such as + andke are theraison d’étreof streams. Each suspension carries a small
but significant overhead, so for maximum efficiency laziness should be used oniytiadre
is a good reason to do so. If the only uses of lazy lists in a given application@melithic,
then that application should use simple suspended lists rather than streams.

Figure 2.1 summarizes these stream functions as a Standard ML module. Naieethat
type of streams is defined using Standard Mkightype construction, but that older versions
of Standard ML do not allowvithtype declarations in signatures. This feature will be sup-
ported in future versions of Standard ML, but if your compiler does not allow it, theimm-
ple workaround is to delete th&tream type and replace every occurrencerobtreamn with
7 StreamCell susp. By including theStreamCell datatype in the signature, we have delib-
erately chosen to expose the internal representation in order to support pa#tmng on
streams.

2.2 Historical Notes

Lazy Evaluation Wadsworth [Wad71] first proposed lazy evaluation as an optimization of
normal-order reduction in the lambda calculus. Vuillemin [Vui74] later shotied, under
certain restricted conditions, lazy evaluation is an optimal evaloatirategy. The formal
semantics of lazy evaluation has been studied extensively [Jos89, Lau93, G\H4 95].
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signature STREAM =

sig
datatype o StreamCell = Nil| Consof & x « Stream
withtype « Stream =« StreamCell susp

val + o Streamx « Stream— « Stream ¢ stream appendk)
valtake :intx « Stream— « Stream
valdrop :intx a Stream— « Stream
val reverse « Stream— « Stream
end

structure Stream : SREAM =

sig
datatype o StreamCell = Nil| Consof « x « Stream
withtype « Stream =« StreamCell susp

fun s #+ ¢ = $cases of
$Nil = force ¢
| $Cons ¢, s') = Cons ¢, s’ + 1)
fun take (@, s) = $case(n, s) of
(0, _) = Nil
| (_, $Nil) = Nil
| (_, $Cons ¢, s')) = Cons ¢, take (—1, s'))
fun drop (n, s) = let fun drog (0, $¢) = ¢
| drog (n, $Nil) = Nil
| drog (n, $Cons ¢, s’)) = drog (n—1, s’)
in $drog (n, s) end
fun reverses = let fun reversé ($Nil, r) = r
| reversé ($Cons ¢, s), r) = reverseé(s, Cons ¢, $r))
in $reversé(s, Nil) end
end

Figure 2.1: A small streams package.

Streams Landin introduced streams in [Lan65], but without memoization. Friedman and
Wise [FW76] and Henderson and Morris [HM76] extended Landin’s streams withaize-
tion.

Memoization Michie [Mic68] coined the term memoization to denote the augmentation of
functions with a cache of argument-result pairs. (The argument field is droppedméraniz-
ing suspensions by regarding suspensions as nullary functions.) Hughes [Hug85] latel applie
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memoization, in the original sense of Michie, to functional programs.

Algorithmics  Both components of lazy evaluation — delaying computations and memoizing
the results — have a long history in algorithm design, although not always in combingtien.
idea of delaying the execution of potentially expensive computations (often de)eioised to

good effect in hash tables [WV86], priority queues [ST86b, FT87], and seaeh iDSST89].
Memoization, on the other hand, is the basic principle of such techniques as dynamic program
ming [Bel57] and path compression [HU73, TvL84].

Syntax for Lazy Evaluation Early versions of CAML [WF90], a close cousin of Standard
ML, offered support for lazy evaluation similar to tenotation proposed here. Rather than
providing a single lazy constructor, however, CAML allowed any data cortstrtwbe tagged

as lazy, after which all applications of the constructor would be evaluatég lalthough this

is more flexible thar$-notation, it also leads to programs that are significantly harder to read.
With $-notation, it is syntactically apparent which subexpressions are to be evhiidtdly

and which are to be evaluated lazily, but in CAML, this information cary vl determined by
referring back to the type declarations.



Chapter 3

Amortization and Persistence via Lazy
Evaluation

Over the past fifteen years, amortization has become a powerful tool in tige desl analysis
of data structures. Implementations with good amortized bounds are often sangléaster
than implementations with equivalent worst-case bounds. Unfortunately, stialegdaniques
for amortization apply only to ephemeral data structures, and so are unstidgadiesigning
or analyzing functional data structures, which are automatically persistent

In this chapter, we review the two traditional techniques for analyzing anedrtata struc-
tures — thebanker’'s metho@nd thephysicist's method— and show where they break down
for persistent data structures. Then, we demonstrate how lazy evaluatiomechate the con-
flict between amortization and persistence. Finally, we adapt the baakekshysicist's meth-
ods to analyze lazy amortized data structures.

The resulting techniques are both the first techniques for designing and analyzirgy persi
tent amortized data structures and the first practical techniques for arglyan-trivial lazy
programs.

3.1 Traditional Amortization

The notion of amortization arises from the following observation. Given a seguef oper-
ations, we may wish to know the running time of the entire sequence, but not care lagout t
running time of any individual operation. For instance, given a sequengepérations, we
may wish to bound the total running time of the sequencé&by) without insisting that each
individual operation run ir)(1) time. We might be satisfied if a few operations ruifiog n)

or evenO(n) time, provided the total cost of the sequence is anfy:). This freedom opens
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up a wide design space of possible solutions, and often yields new solutions that glex sim
and faster than worst-case solutions with equivalent bounds. In fact, for sablems, such
as the union-find problem [TvL84], there are amortized solutions that are asym|pydasser
than any possible worst-case solution (assuming certain modest ress)dBlu86].

To prove an amortized bound, one defines the amortized cost of each operation and then
proves that, for any sequence of operations, the total amortized cost of thel@peratan
upper bound on the total actual cost, i.e.,

m m
dai >t
=1 =1

whereq; is the amortized cost of operationt; is the actual cost of operatianandm is the
total number of operations. Usually, in fact, one proves a slightly strongettrékat at any
intermediate stage in a sequence of operations, the accumulated amortizesdlasosipper
bound on the accumulated actual cost, i.e.,

j j
dai >t
=1 =1
for any;. The difference between the accumulated amortized costs and the acadadatal
costs is called thaccumulated savingsThus, the accumulated amortized costs are an upper
bound on the accumulated actual costs whenever the accumulated savings is nom:negativ

Amortization allows for occasional operations to have actual costs tha¢@xheir amor-
tized costs. Such operations are cakegbensive Operations whose actual costs are less than
their amortized costs are calledeap Expensive operations decrease the accumulated savings
and cheap operations increase it. The key to proving amortized bounds is to shexpbat
sive operations occur only when the accumulated savings are sufficient to lseearst, since
otherwise the accumulated savings would become negative.

Tarjan [Tar85] describes two techniques for analyzing ephemeral amortitzedtdactures:
thebanker’'s metho@nd thephysicist's methadn the banker’'s method, the accumulated sav-
ings are represented editsthat are associated with individual locations in the data structure.
These credits are used to pay for future accesses to these locations. ditieeahtost of any
operation is defined to be the actual cost of the operation plus the credits alldgatbe
operation minus the credits spent by the operation, i.e.,

a;=1ti+¢—¢

wheree¢; is the number of credits allocated by operatigrande; is the number of credits
spent by operation Every credit must be allocated before it is spent, and no credit may be
spent more than once. Therefop€,c; > > ¢;, which in turn guarantees th&t «;, > > ;,

as desired. Proofs using the banker’'s method typically deferedit invariantthat regulates
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the distribution of credits in such a way that, whenever an expensive operatim occur,
sufficient credits have been allocated in the right locations to coveodis ¢

In the physicist's method, one describes a functiothat maps each objedtto a real
number called th@otentialof 4. The function® is typically chosen so that the potential is
initially zero and is always non-negative. Then, the potential representges bmund on the
accumulated savings.

Letd; be the output of operatiorand the input of operatioiy- 1. Then, the amortized cost
of operation is defined to be the actual cost plus the change in potential betwyeeandd;,
ie.,

a; = ti + (I)(dz) — (I)(dz_l)

The accumulated actual costs of the sequence of operations are

it o= Yli(ai+@(diny) — @(dy))
= izt @+ iz (®(dima) — @(d;))
= Yz @ + @(do) — @(d;)

Sums such a5 (®(d;_1) — ®(d;)), where alternating positive and negative terms cancel each
other out, are calletelescoping seriesProvided® is chosen in such a way th&{d, ) is zero
and®(d;) is non-negative, theft(d;) > ®(dy) andy_ a; > ¥ t;, so the accumulated amortized
costs are an upper bound on the accumulated actual costs, as desired.

Remark: This is a somewhat simplified view of the physicist's method. In real analgses,
often encounters situations that are difficult to fit into the framework agitbesc For example,
what about functions that take or return more than one object? However, this sachpidw
suffices to illustrate the relevant issues. &

Clearly, the two methods are very similar. We can convert the banketlsed to the physi-
cist’'s method by ignoring locations and taking the potential to be the total numberditsare
the object, as indicated by the credit invariant. Similarly, we canednkie physicist’s method
to the banker’s method by converting potential to credits, and placing alltsredithe root.
It is perhaps surprising that the knowledge of locations in the banker's method offergrao
power, but the two methods are in fact equivalent [Tar85, Sch92]. The physicisthod is
usually simpler, but it is occasionally convenient to take locations intowatc

Note that both credits and potential are analysis tools only; neither actuallyrappehe
program text (except maybe in comments).

3.1.1 Example: Queues

We next illustrate the banker’s and physicist’'s methods by analyzing a simplednalkitm-
plementation of the queue abstraction, as specified by the signature in Figure 3.1.
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signature QUEUE =
sig
type o Queue
exceptionEMPTY

valempty o Queue
val isEmpty : o« Queue— bool

valsnoc o Queuex o — a Queue

valhead o Queue— « (x raisesEMPTY if queue is empty)
val tail » o Queue— o Queue ¢ raiseseEMPTY if queue is empty)
end

Figure 3.1: Signature for queues.

(Etymological notesnoc is cons spelled backward and means “cons on the right”.)

A common representation for purely functional queues [Gri81, HM81, Bur82] is ag a pai
of lists, I' and R, wherel’ contains the front elements of the queue in the correct orderzand
contains the rear elements of the queue in reverse order. For example, a queusrgpttiai
integers 1...6 might be represented by the lists[1,2,3] andRk =[6,5,4]. This representation
is described by the following datatype:

datatype o Queue = Queusef {F : o list, R : « list}

In this representation, the head of the queue is the first elemént £ cad andtail return
and remove this element, respectively.

fun head (Queu¢F =z :: f,R=r})=2
fun tail (Queue{F =z :: f,R=r})=Queue{F=f, R =r}

Remark: To avoid distracting the reader with minor details, we will commonly ignarere
cases when presenting code fragments. For example, the above code fragments slerifat de
the behavior oficad or tail on empty queues. We will always include the error cases when
presenting complete implementations. <&

Now, the last element of the queue is the first elemenk p$o snoc simply adds a new
element at the head @f.

fun snoc (QueudF =f,R=r},2) =Queue{F=f,R=z i r}
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Elements are added #® and removed front’, so they must somehow migrate from one list to
the other. This is accomplished by reversim@nd installing the result as the néwwhenever

F would otherwise become empty, simultaneously setting the Rew []. The goal is to
maintain the invariant that' is empty only if R is also empty (i.e., the entire queue is empty).
Note that if /* were empty wherkR was not, then the first element of the queue would be the
last element of?, which would takeO(») time to access. By maintaining this invariant, we
guarantee thatead can always find the first elementdn(1) time.

snoc andiail must now detect those cases that would otherwise result in a violation of the
invariant, and change their behavior accordingly.

fun snoc (QueudF =], ...}, ) = Queue{F =[z], R=[]}

| snoc (QueudF =/, R=r}, z)=Queue{F=f,R=z:r}
fun tail (Queue{F =[z], R =r}) = Queue{F =revr, R =[]}

| tail (Queue{F =z :: f,R=r})=Queue{F=f,R=r}

Note the use of the record wildcard (...) in the first clauserafc. This is Standard ML
pattern-matching notation meaning “the remaining fields of this record alevant”. In this
case, thek field is irrelevant because we know by the invariant that i& [], then so isk.

A cleaner way to write these functions is to consolidate the invarianite@ance duties of
snoc andtail into a singlepseudo-constructorPseudo-constructors, sometimes cafietart
constructorgAda93], are functions that replace ordinary constructors in the construction of
data, but that check and enforce an invariant. In this case, the pseudo-cumstudae re-
places the ordinary construct@Queue, but guarantees that is empty only if R is also empty.

fun queue{F =[], R =r} = Queue{F =revr, R =[]}
|queue{F:f, R:T}:QUGUG{F:f, R:?“}

fun snoc (QueudF =f, R=r}, z) =queue(F=f, R=z = r}

fun tail (Queue{F =z :: f,R=r}) =queue{F=f,R=r}

The complete code for this implementation is shown in Figure 3.2. Every funcxioepée
tail takesO(1) worst-case time, butu:! takesO(n) worst-case time. However, we can show
thatsnoc andtail each take only)(1) amortized time using either the banker’s method or the
physicist’s method.

Using the banker’s method, we maintain a credit invariant that the reatwstys contains
a number of credits equal to its length. Evenpc into a non-empty queue takes one actual
step and allocates a credit to the new element of the rear list, for artiaetbcost of two.
Every tail that does not reverse the rear list takes one actual step and neither allocate
spends any credits, for an amortized cost of one. Finally, exghthat does reverse the rear
list takesm + 1 actual steps, whene is the length of the rear list, and spends theredits
contained by that list, for an amortized costof+ 1 — m = 1.



18 Amortization and Persistence via Lazy Evaluation

structure BatchedQueue : QEUE =
struct
datatype oo Queue = Queuef {F : a list, R : « list}
(* Invariant: F is empty only iR is also empty)
exceptionEMPTY
val empty = QueudF =[], R=[]}
fun isEmpty (QueudF =f, R=r})=null f
fun queue{F =[], R =r) = Queue{F =revr, R=[1]}
| queuey = Queuey
fun snoc (QueudF =f, R=r),z) =queue{F=f, R=z:: r}
fun head (Queug¢F =[], ...}) =raise EMPTY
| head (QueugF =z ::f,...}) ==
fun tail (Queue{F =[], ...}) =raise EMPTY
| tail (Queue{F =z : f,R=r})=queue{F=f,R=r}
end

Figure 3.2: A common implementation of purely functional queues [Gri81, HM81, Bur82].

Using the physicist’'s method, we define the potential functida be the length of the rear
list. Then everysnoc into a non-empty queue takes one actual step and increases the potential
by one, for an amortized cost of two. Evetyil that does not reverse the rear list takes one
actual step and leaves the potential unchanged, for an amortized cost of onky, &weay («il
that does reverse the rear list takes- 1 actual steps and sets the new rear list to [ ], decreasing
the potential byn, for an amortized cost of: + 1 — m = 1.

In this simple example, the proofs are virtually identical. Even so, the plsysionethod
is slightly simpler for the following reason. Using the banker’'s method, we nmssichoose a
credit invariant, and then decide for each function when to allocate or spediisc The credit
invariant provides guidance in this decision, but does not make it automatic. Fancast
shouldsnoc allocate one credit and spend none, or allocate two credits and spend one? The
net effect is the same, so this freedom is just one more potential source of conf@si the
other hand, using the physicist's method, we have only one decision to make — the choice of
the potential function. After that, the analysis is mere calculation, with ncerfreedom of
choice.
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3.2 Persistence: The Problem of Multiple Futures

In the above analyses, we implicitly assumed that queues were used ephefnerain a
single-threaded fashion). What happens if we try to use these queues persistently?

Let ¢ be the result of inserting elements into an initially empty queue, so that the front
list of ¢ contains a single element and the rear list contains 1 elements. Now, suppose
we useq persistently by taking its taik times. Each call otail ¢ takesn actual steps. The
total actual cost of this sequence of operations, including the time to dusd:> + ». If the
operations truly toolk)(1) amortized time each, then the total actual cost would be Oh).
Clearly, using these queues persistently invalidatestfie amortized time bounds proved
above. Where do these proofs go wrong?

In both cases, a fundamental requirement of the analysis is violated by pardestie struc-
tures. The banker's method requires that no credit be spent more than once, while the phys
cist's method requires that the output of one operation be the input of the next operation (or,
more generally, that no output be used as input more than once). Now, consider the second
call to tail ¢ in the example above. The first call t@il ¢ spends all the credits on the rear list
of ¢, leaving none to pay for the second and subsequent calls, so the banker’'s method breaks.
And the second call touil ¢ reuses; rather than the output of the first call, so the physicist’s
method breaks.

Both these failures reflect the inherent weakness of any accounting systethdmaae-
cumulated savings — that savings can only be spent once. The traditional methods of amor-
tization operate by accumulating savings (as either credits or potentialjitimefuse. This
works well in an ephemeral setting, where every operation has only a singlellégiare. But
with persistence, an operation might have multiple logical futures, eaclpetimy to spend
the same savings.

3.2.1 Execution Traces and Logical Time

What exactly do we mean by the “logical future” of an operation?

We model logical time withexecution traceswhich give an abstract view of the history
of a computation. An execution trace is a directed graph whose nodes represergsting”
operations, usually just update operations on the data type in question. An edge tivarn
indicates that operationf uses some result of operation The logical history of operation
v, denotedy, is the set of all operations on which the resultadepends (including itself).

In other wordsy is the set of all nodes such that there exists a path (possibly of length 0)
from w to v. A logical futureof a nodev is any path fromv to a terminal node (i.e., a node
with out-degree zero). If there is more than one such path, then mbds multiple logical
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futures. We will sometimes refer to the logical history or logical futurerobaject, meaning
the logical history or logical future of the operation that created the object.

Execution traces generalize the notiorvefsion graph$DSST89], which are often used to
model the histories of persistent data structures. In a version graph, nodesregphe various
versions of a single persistent identity and edges represent dependencies bedvsemrs.
Thus, version graphs model the results of operations and execution traces model#ienpe
themselves. Execution traces are often more convenient for combining tbedsof several
persistent identities (perhaps not even of the same data type) or for reasoning abatibope
that do not return a new version (e.g., queries) or that return severalsrésugft, splitting a list
into two sublists).

For ephemeral data structures, the out-degree of every node in a version gragcwr ex
tion trace is typically restricted to be at most one, reflecting thetéinmn that objects can
be updated at most once. To model various flavors of persistence, version graphshall
out-degree of every node to be unbounded, but make other restrictions. For instanc® versi
graphs are often limited to be trees (forests) by restricting the in-degjrevery node to be at
most one. Other version graphs allow in-degrees of greater than one, but forkad,ayelking
every graph a dag. We make none of these restrictions on execution traces. Nibdies w
degree greater than one correspond to operations that take more than one argumestjstuch a
catenation or set union. Cycles arise from recursively defined objects, wtedupported by
many lazy languages. We even allow multiple edges between a single pair of asdeght
occur if a list is catenated with itself.

We will use execution traces in Section 3.4.1 when we extend the bankehsdietcope
with persistence.

3.3 Reconciling Amortization and Persistence

In the previous section, we saw that traditional methods of amortization breh& presence
of persistence because they assume a unique future, in which the accumulatgd salbe
spent at most once. However, with persistence, multiple logical futurgistrall try to spend
the same savings. In this section, we show how the banker’s and physicist's medindoks ¢
repaired by replacing the notion of accumulated savings with accumulated dedre debt
measures the cost of unevaluated lazy computations. The intuition is that, altbexighs
can only be spent once, it does no harm to pay off debt more than once.

3.3.1 The Role of Lazy Evaluation

Recall that arexpensiv@peration is one whose actual costs are greater than its (desired) amor-
tized costs. For example, suppose some applicgtienis expensive. With persistence, a
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malicious adversary might cafl » arbitrarily often. (Note that each operation is a new logi-
cal future ofz.) If each operation takes the same amount of time, then the amortized bounds
degrade to the worst-case bounds. Hence, we must find a way to guarantee thatrgtthe fi
application off to = is expensive, then subsequent applicationstofx will not be.

Without side-effects, this is impossible under call-by-value (i.e., tstiraluation) or call-
by-name (i.e., lazy evaluation without memoization), because every ajppphad f to = will
take exactly the same amount of time. Therefore, amortization cannot be ysefibined
with persistence in languages supporting only these evaluation orders.

But now consider call-by-need (i.e., lazy evaluation with memoizatidn) cobntains some
suspended component that is needed bthen the first application of to = will force the
(potentially expensive) evaluation of that component and memoize the result.qgBahsep-
erations may then access the memoized result directly. This is exlaettiesired behavior!

Remark: In retrospect, the relationship between lazy evaluation and amootiz&tinot
surprising. Lazy evaluation can be viewed as a form of self-modification, araitaation
often involves self-modification [ST85, ST86b]. However, lazy evidunais a particularly
disciplined form of self-modification — not all forms of self-modification tyglig used in
amortized ephemeral data structures can be encoded as lazy evaluationticiigrasplay-
ing [ST85] does not appear to be amenable to this technique. &

3.3.2 A Framework for Analyzing Lazy Data Structures

We have just shown that lazy evaluation is necessary to implement astbdata structures
purely functionally. Unfortunately, analyzing the running times of programs invollazg
evaluation is notoriously difficult. Historically, the most common techniqueafwealyzing
lazy programs has been to pretend that they are actually strict. Howbigetechnique is
completely inadequate for analyzing lazy amortized data structures. We rsexitdea basic
framework to support such analyses. In the remainder of this chapter, welajit the banker’s
and physicist's methods to this framework, yielding both the first techniques foyzangl
persistent amortized data structures and the first practical techniquasdiyzing non-trivial
lazy programs.

We classify the costs of any given operation into several categories, thieunshared cost
of an operation is the actual time it would take to execute the operation undessin@ation
that every suspension in the system at the beginning of the operation has alreafiyrbeén
and memoized (i.e., under the assumption fhate always take$)(1) time, except for those
suspensions that are created and forced within the same operationshadieel cosbof an
operation is the time that it would take to execute every suspension cla#tedt evaluated
by the operation (under the same assumption as above)cdrhplete cosbf an operation is



22 Amortization and Persistence via Lazy Evaluation

the sum of its shared and unshared costs. Note that the complete cost is whatdheast of
the operation would be if lazy evaluation were replaced with strictuatain.

We further partition the total shared costs of a sequence of operations intzeckalnd
unrealized costsRealized costare the shared costs for suspensions that are executed during
the overall computationUnrealized costsre the shared costs for suspensions that are never
executed. Théotal actual cosbf a sequence of operations is the sum of the unshared costs and
the realized shared costs — unrealized costs do not contribute to the axgtid\ote that the
amount that any particular operation contributes to the total actual coskeigsatits unshared
cost, and at most its complete cost, depending on how much of its shared cobzésirea

We account for shared costs using the notiomotumulated debtlinitially, the accumu-
lated debt is zero, but every time a suspension is created, we increasectiraulated debt
by the shared cost of the suspension (and any nested suspensions). Each operapapsthe
off a portion of the accumulated debt. ThAmortized cosbf an operation is the unshared cost
of the operation plus the amount of accumulated debt paid off by the operation. We are not
allowed to force a suspension until the debt associated with the suspensminaly @aid off.
This treatment of debt is reminiscent oegaway planin which one reserves an item and then
makes regular payments, but receives the item only when it is entirely faid of

There are three important moments in the life cycle of a suspension: when @atedy
when it is entirely paid off, and when it is executed. The proof obligation ihtavsthat the
second moment precedes the third. If every suspension is paid off before itesl fthen the
total amount of debt that has been paid off is an upper bound on the realized sharednmbsts,
therefore the total amortized cost (i.e., the total unshared cost plus thartaiant of debt that
has been paid off) is an upper bound on the total actual cost (i.e., the total unsbstretiis
the realized shared costs). We will formalize this argument in Se8tiba.

One of the most difficult problems in analyzing the running time of lazy programsis rea
soning about the interactions of multiple logical futures. We avoid this problem lspmézy
about each logical futuras if it were the only oneFrom the point of view of the operation
that creates a suspension, any logical future that forces the suspension elgaitdor the
suspension. If two logical futures wish to force the same suspension, then botlpagust
the suspension individually — they may not cooperate and each pay only a portion of the debt.
An alternative view of this restriction is that we are allowed to #éoecsuspensioanly when
the debt for that suspension has been paid off within the logical history of current operation
Using this method, we will sometimes pay off a debt more than once, therebystusagng
the total time required for a particular computation, but this does no harm andnalbsice
to pay for the simplicity of the resulting analyses.
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3.4 The Banker's Method

We adapt the banker’s method to account for accumulated debt rather than accdisaatgs

by replacing credits with debits. Each debit represents a constant amount afidedpeork.
When we initially suspend a given computation, we create a number of debits proplaidiona
its shared cost and associate each debit with a location in the object.h®loe of location

for each debit depends on the nature of the computation. If the computatimmislithic(i.e.,

once begun, it runs to completion), then all debits are usually assigned to the rootedulte

On the other hand, if the computationircremental(i.e., decomposable into fragments that
may be executed independently), then the debits may be distributed among the rdws of t
partial results.

The amortized cost of an operation is the unshared cost of the operation plus the number of
debits discharged by the operation. Note that the number of debits created by aroopsnati
included in its amortized cost. The order in which debits should be discharged dereinols
the object will be accessed; debits on nodes likely to be accessed soon shoulchbegdidc
first. To prove an amortized bound, we must show that, whenever we acceasi@rigpossibly
triggering the execution of a suspension), all debits associated with théblobave already
been discharged (and hence the suspended computation has been paid for). This guarantee
that the total number of debits discharged by a sequence of operations is an upper bound on the
realized shared costs of the operations. The total amortized costs a®them upper bound
on the total actual costs. Debits leftover at the end of the computation poneéso unrealized
shared costs, and are irrelevant to the total actual costs.

Incremental functions play an important role in the banker’'s method because ey al
debits to be dispersed to different locations in a data structure, eaclsponding to a nested
suspension. Then, each location can be accessed as soon as its debits agedisaithout
waiting for the debits at other locations to be discharged. In practice, thissileat the initial
partial results of an incremental computation can be paid for very quicklthatgubsequent
partial results may be paid for as they are needed. Monolithic functions, on thehatindrare
much less flexible. The programmer must anticipate when the result of an ex@er@mlithic
computation will be needed, and set up the computation far enough in advance to be able to
discharge all its debits by the time its result is needed.

3.4.1 Justifying the Banker’'s Method

In this section, we justify the claim that the total amortized cost is anruppend on the total
actual cost. The total amortized cost is the total unshared cost plus the tota¢nahaebits
discharged (counting duplicates); the total actual cost is the total unshargiusa$te realized
shared costs. Therefore, we must show that the total number of debits disclsaegedgper
bound on the realized shared costs.
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We can view the banker’'s method abstractly as a graph labelling problem, usiexgitie
tion traces of Section 3.2.1. The problem is to label every node in a traceéhsath (multi)sets
s(v), a(v), andr(v) such that

0) v#V = s(v)Ns(v) =0
(1) a(v) € Upes s(w)
(1 r(v) € Uyes a(w)

s(v) is a set, but:(v) andr(v) may be multisets (i.e., may contain duplicates). Conditions I
and Il ignore duplicates.

s(v) is the set of debits allocated by operatianCondition | states that no debit may be

allocated more than once(v) is the multiset of debits discharged by Condition Il insists

that no debit may be discharged before it is created, or more specificallyanhaperation

can only discharge debits that appear in its logical history. Finally) is the multiset of
debitsrealized by v (that is, the multiset of debits corresponding to the suspensions forced
by v). Condition Il requires that no debit may be realized before it is dischargeohooe
specifically, that no debit may realized unless it has been discharged withlogical history

of the current operation.

Why area(v) andr(v) multisets rather than sets? Because a single operation might dis-
charge the same debits more than once or realize the same debits more than oocarigy f
the same suspensions more than once). Although we never deliberately dischargmehe s
debit more than once, it could happen if we were to combine a single object with Fee
example, suppose in some analysis of a list catenation function, we dischargdebiesfrom
the first argument and a few debits from the second argument. If we then catdisat@ith
itself, we might discharge the same few debits twice.

Given this abstract view of the banker’'s method, we can easily measucaisaosts of a
computation. Led be the set of all nodes in the execution trace. Then, the total shared cost is
> vev |s(v)| and the total number of debits dischargeRis.y |a(v)|. Because of memoization,
the realized shared cost is Gt |r(v)|, but rathet |, oy r(v)|, whereJ discards duplicates.

By Condition Ill, we know thatJ,cy r(v) € U,ey a(v). Therefore,

| Uvev ()] < [Usev a(v)] < 3pev la(v)]

So the realized shared cost is bounded by the total number of debits discharged, anal the t
actual cost is bounded by the total amortized cost, as desired.

Remark: This argument once again emphasizes the importance of memoization. Without
memoization (i.e., if we were using call-by-name rather than call-byhelee total realized
costwouldbé&”, .y |r(v)|, and there is no reason to expect this sum to be lessthan |a(v)].

&
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3.4.2 Example: Queues

We next develop an efficient persistent implementation of queues, and proevénabpera-
tion takes onlyO(1) amortized time using the banker’s method.

Based on the discussion in the previous section, we must somehow incorporatediazy e
uation into the design of the data structure, so we replace the pair of liskeiprevious
implementation with a pair of streanhsTo simplify later operations, we also explicitly track
the lengths of the two streams.

datatype o Queue = QueuéF : « Stream, LenF : int, Ra Stream, LenR : int

Note that a pleasant side effect of maintaining this length information isateatan trivially
support a constant-tim&ze function.

Now, waiting until the front list becomes empty to reverse the rear liss cha¢ leave suf-
ficient time to pay for the reverse. Instead, we periodicadtatethe queue by moving all the
elements of the rear stream to the end of the front stream, replacmith ' # reverse R and
setting the new rear stream to emp®M/). Note that this transformation does not affect the
relative ordering of the elements.

When should we rotate the queue? Recall thatrse is a monolithic function. We must
therefore set up the computation far enough in advance to be able to dischargeeltiis by
the time its result is needed. Theverse computation takegR| steps, so we will allocatg?)|
debits to account for its cost. (For now we ignore the cost of the + operation). Tihesttre
reverse suspension could be forced is aftéi| applications oftail, so if we rotate the queue
when|R| ~ |F'| and discharge one debit per operation, then we will have paid for the reverse
by the time it is executed. In fact, we will rotate the queue whené&vbecomes one longer
than F', thereby maintaining the invariant th@t| > |R|. Incidentally, this guarantees that
is empty only if R is also empty. The major queue functions can now be written as follows:

fun snoc (QueudF =/, LenF =lent', R =r, LenR =lenR}, 2) =
queue{F =f, LenF =lenF, R =$Cons ¢, r), LenR =lenR+1}

fun head (Queu¢F =$Cons ¢, /), ...}) =«

fun tail (Queue{F =$Cons ¢, /), LenF =lenf', R =r, LenR =lenR}) =
queue{F =f, LenF =lenF'—1, R=r, LenR =lenR}

where the pseudo-construcipreue guarantees that’| > |R|.

fun queue ¢ as{F =/, LenF =lenF,R =r, LenR =lenR}) =
if lenR < lenk’ then Queuey
elseQueue(F = f + reverser, LenF =lenf'+lenR, R =$Nil, LenR = 0}

The complete code for this implementation appears in Figure 3.3.

1Actually, it would be enough to replace only the front listlwa stream, but we replace both for simplicity.
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structure BankersQueue : QeUE =
struct
datatype oo Queue = QueuéF : o Stream, LenF : int, Raw Stream, LenR : int
(x Invariants: |[F| > |R|, LenF= |F|,LenR= |R] %)

exceptionEMPTY

val empty = Queud F = $Nil, LenF = 0, R =$Nil, LenR = 0}
fun isEmpty (Queu€LenF =lenF, ...}) = (lenF = 0)

fun queue ¢ as{F =f, LenF =lenF, R =r, LenR =lenR}) =
if lenR < lenF then Queuey
elseQueue{F = f + reverser, LenF =lenF+lenR, R =$Nil, LenR = 0}

fun snoc (QueudF =f, LenF =lenF, R =r, LenR =lenR}, z) =
queue{F =f, LenF =lent’, R =$Cons ¢, r), LenR =lenR+1}

fun head (QueugF =$Nil, ... }) = raise EMPTY
| head (QueugF =$Cons ¢, f),...}) ==
fun tail (Queue{F =$Nil, ... }) = raise EMPTY
| tail (Queue{F =$Cons ¢, /), LenF =lenF,R =r, LenR =lenR}) =
queue{F =f, LenF =lenF'—1, R =r, LenR =lenR}
end

Figure 3.3: Amortized queues using the banker's method.

To understand how this implementation deals efficiently with persistencsjder the fol-
lowing scenario. Let, be some queue whose front and rear streams are both of lengthd
let ¢; = tail ¢;_1, for0 < ¢ < m + 1. The queue is rotated during the first applicatioriaf,
and thereverse suspension created by the rotation is forced during the last applicati@i of
This reversal takes: steps, and its cost is amortized over the sequence ¢,,. (For now, we
are concerned only with the cost of theerse — we ignore the cost of the +.)

Now, choose some branch pointand repeat the calculation frognto ¢,, 1. (Note thaty;
is used persistently.) Do thistimes. How often is theeverse executed? It depends on whether
the branch point is before or after the rotation. Suppdses after the rotation. In fact, suppose
k = m so that each of the repeated branches is a singleEach of these branches forces the
reverse suspension, but they each force ganesuspension, so thewverse is executed only
once. Memoization is crucial here — without memoization the:rse would be re-executed
each time, for a total cost ofi(d + 1) steps, with onlyn + 1 + d operations over which to
amortize this cost. For largé this would result in ar®(m) amortized cost per operation, but
memoization gives us an amortized cost of oflyl ) per operation.

It is possible to re-execute theverse however. Simply také = 0 (i.e., make the branch
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point just before the rotation). Then the fitgt/ of each branch repeats the rotation and creates

a new reverse suspension. This new suspension is forced in the dastof each branch,
executing theeverse. Because these are different suspensions, memoization does not help at
all. The total cost of all the reversals:is - d, but now we havém + 1)(d + 1) operations

over which to amortize this cost, yielding an amortized cosv0ff) per operation. The key is

that we duplicate work only when we also duplicate the sequence of operations ocartahi
amortize the cost of that work.

This informal argument shows that these queues require ©fnly amortized time per
operation even when used persistently. We formalize this proof using the baniettiod.

By inspection, the unshared cost of every queue operatién i3. Therefore, to show
that the amortized cost of every queue operatiai(is), we must prove that dischargirig( 1)
debits per operation suffices to pay off every suspension before it is forcedc{)only snoc
andtail must discharge any debits.)

“Let d(z) be the number of debits on théh node of the front stream and lé}(:) =
>i—o d(7) be the cumulative number of debits on all nodes up to and includingttheode.
We maintain the followinglebit invariant

D(i) < min(2i,|F| — |R|)

The2; term guarantees that all debits on the first node of the front stream have beemgksicha
(sinced(0) = D(0) < 2-0 = 0), so this node may be forced at will (for instance,faytd or

tail). The|F| — |R| term guarantees that all debits in the entire queue have been discharged
whenever the streams are of equal length (i.e., just before the next rotation).

Theorem 3.1 The snoc and tail operations maintain the debit invariant by discharging one
and two debits, respectively.

Proof: Every snoc operation that does not cause a rotation simply adds a new element to
the rear stream, increasing| by one and decreasing’| — |R| by one. This will cause the
invariant to be violated at any node for whidh(i) was previously equal tof'| — |R|. We

can restore the invariant by discharging the first debit in the queue, whichadesrevery
subsequent cumulative debit total by one. Similarly, everythat does not cause a rotation
simply removes an element from the front stream. This decredseby one (and hence
|F'| — | R| by one), but, more importantly, it decreases the indekevery remaining node by
one, which in turn decreases by two. Discharging the first two debits in the queue restores
the invariant. Finally, consideraoc or tail that causes a rotation. Just before the rotation, we
are guaranteed that all debits in the queue have been discharged, so, aftetithre thaonly
debits are those generated by the rotation itself#If= m and|R| = m + 1 at the time of
the rotation, then there will bex debits for the append and + 1 debits for thercverse. The
append function is incremental so we place one of its debits on each of the fisties. On
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the other hand, thecverse function is monolithic so we place alt + 1 of its debits on node
m, the first node of the reversed stream. Thus, the debits are distributechstich t
1 if i <m
di)=S m+1 ifi=m  and D(i):{
0 if i >m

141 if i <m
2m+1 ifi>m

This distribution violates the invariant at both nddand noden, but discharging the debit on
the first node restores the invariant. O

The format of this argument is typical. Debits are distributed across aemedes for
incremental functions, and all on the same node for monolithic functions. Debitantgr
measure, not just the number of debits on a given node, but the number of debits along the
path from the root to the given node. This reflects the fact that accessing a mpuesdirst
accessing all its ancestors. Therefore, the debits on all those nodes musi be zell.

This data structure also illustrates a subtle point about nested suspensions -bitthéode
a nested suspension may be allocated, and even discharged, before the susp@hsisin is
cally created. For example, consider how + (append) works. The suspension focahe se
node in the stream is not physically created until the suspension for the first naaleasl.f
However, because of memoization, the suspension for the second node will be shared w
ever the suspension for the first node is shared. Therefore, we consider a negttsusto
be implicitly created at the time that its enclosing suspension is ce&erthermore, when
considering debit arguments or otherwise reasoning about the shape of an object, we ignore
whether a node has been physically created or not. Rather we reason about the shape of an
object as if all nodes were in their final form, i.e., as if all suspensionkarobject had been
forced.

3.5 The Physicist’'s Method

Like the banker's method, the physicist’'s method can also be adapted to worlcaitimalated

debt rather than accumulated savings. In the traditional physicist's method, arédesa
potential function® that represents a lower bound on the accumulated savings. To work with
debt instead of savings, we replagewith a function¥ that maps each object to a potential
representing an upper bound on the accumulated debt (or at least, an upper bound on this
object’s portion of the accumulated debt). Roughly speaking, the amortized cost ofrahape

is then the complete cost of the operation (i.e., the shared and unshared ¢ogtsihachange

in potential. Recall that an easy way to calculate the complete costafexation is to pretend

that all computation is strict.

Any changes in the accumulated debt are reflected by changes in the poterdialogf
eration does not pay any shared costs, then the change in potential is equah#oats ®st,
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so the amortized cost of the operation is equal to its unshared cost. On the atbdf aa
operation does pay some of its shared cost, or shared costs of previous operatiotise then
change in potential is smaller than its shared cost (i.e., the accumdibedhcreases by less
than the shared cost), so the amortized cost of the operation is greatetstbashared cost.
However, the change in potential may never be more than the shared cost — thizeshamst

of an operation may not be less than its unshared cost.

We can justify the physicist's method by relating it back to the banker's metRedall
that in the banker’'s method, the amortized cost of an operation was its unshar@tlsdabe
number of debits discharged. In the physicist's method, the amortized cost is theetempl
cost minus the change in potential, or, in other words, the unshared cost plus thendéfere
between the shared cost and the change in potential. If we consider one unit of pobdoial
equivalent to one debit, then the shared cost is the number of debits by which the aateamul
debt could have increased, and the change in potential is the number of debits by which the
accumulated debt did increase. The difference must have been made up by dmgchange
debits. Therefore, the amortized cost in the physicist's method can alscelwedrias the
unshared cost plus the number of debits discharged.

Sometimes, we wish to force a suspension in an object when the potential of dat obj
is not zero. In that case, we add the object’s potential to the amortized Toist.typically
happens in queries, where the cost of forcing the suspension cannot be reflected by archange
potential because the operation does not return a new object.

The major difference between the banker’'s and physicist’'s methods is that,banker’s
method, we are allowed to force a suspension as soon as the debits for that sushawusi
been paid off, without waiting for the debits for other suspensions to be discharged,tbat i
physicist's method, we can force a shared suspension only when we have reducetiréhe e
accumulated debt of an object, as measured by the potential, to zero. Sincépoteasures
only the accumulated debt of an object as a whole and does not distinguish betweamdiffer
locations, we must pessimistically assume that the entire outstanding agelsoiciated with
the particular suspension we wish to force. For this reason, the physicistisd@ppears to be
less powerful than the banker's method. The physicist's method is also weakiemnways.
For instance, it has trouble with operations that take multiple objects as argiorerturn
multiple objects as results, for which it is difficult to define exactly widtdnge in potential”
means. However, when it applies, the physicist's method tends to be muclesiimgh the
banker’s method.

Since the physicist's method cannot take advantage of the piecemeal executiotedf nes
suspensions, there is no reason to prefer incremental functions to monolithiofimdh fact,
a good hint that the physicist's method might be applicable is if all or most suspensens ar
monolithic.
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3.5.1 Example: Queues

We next adapt our implementation of queues to use the physicist's method. Again, we show
that every operation takes oniy( 1) amortized time.

Because there is no longer any reason to prefer incremental suspensionsooditiit
suspensions, we use suspended lists instead of streams. In fact, thetneeedi not be sus-
pended at all, so we represent it with an ordinary list. Again, we explitiéick the lengths of
the lists and guarantee that the front list is always at least as long asathiste

Since the front list is suspended, we cannot access its first element withgutiegethe
entire suspension. We therefore keep a working copy of a prefix of the front list. Tnisng
copy is represented as an ordinary list for efficient access, and is non-esngiever the front
list is non-empty. The final datatype is

datatype o Queue = Queuef {W : « list, F : « list susp, LenF : int, R« list, LenR : int;
The major functions on queues may then be written

fun snoc (QueudW = w, F=f, LenF =lenF, R =r, LenR =lenR}, z) =
queue{W = w, F =/, LenF =lenF', R=z :: r, LenR =lenR+1}

fun head (QueugW ==z i w, ...}) =«

fun tail (Queue{W =z :: w, F =f, LenF =lenF, R =r, LenR =lenR}) =
queue{W = w, F =$tl (forcef), LenF =lenF'—1, R =r, LenR =lenR})

The pseudo-construct@ueue must enforce two invariants: thdt is no longer than/’, and
that W is non-empty whenever is non-empty.

fun checkW{W =[], F =/, LenF =lenf',R =r, LenR =lenR}) =

Queue{W =forcef,F =/, LenF =lenF, R =r, LenR =lenR})

| checkWg = Queuey

fun checkR ¢ as{W =w, F =/, LenF =lenf', R =r, LenR =lenR}) =

if lenR < lenF then g

else let valw’ = forcef

in {W=uw', F=%(w’ @ revr), LenF =lenF'+lenR, R =[], LenR =G end

fun queueq = checkW (checkRy)

The complete implementation of these queues appears in Figure 3.4.

To analyze these queues using the physicist's method, we choose a potential fimiction
such a way that the potential will be zero whenever we force the suspendéthishappens
in two situations: wheri/ becomes empty and whénbecomes longer thaf. We therefore
choosev to be

W(q) = min(2[W],|F| - |R])
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structure PhysicistsQueue : QEUE =
struct
datatype oo Queue = Queuef {W : a list, F : « list susp, LenF : int, R & list, LenR : int}
(* Invariants: W is a prefix offorce E W =[] only if F = $[], *)
( |F| > |R|, LenF= |F|, LenR= |R| %)

exceptionEMPTY

val empty = QueudW =[], F=$[], LenF=0,R =[], LenR=0
fun isEmpty (Queu€LenF =lenF, ...}) = (lenF = 0)

fun checkW{W =[], F=f, LenF =lenF, R =r, LenR =lenR}) =

Queue{W =forcef, F=f, LenF =lenF, R =r, LenR =lenR})

| checkWq = Queuey

fun checkR ¢ as{W =w, F=f, LenF =lenF, R=r, LenR =lenR}) =

if lenR < lenF then ¢

else let valw’ = force f

in {W=uw', F=$(vw’ @ revr), LenF =lenF + lenR, R=[], LenR =0 end

fun queueg = checkW (checkRy)

fun snoc (QueudW = w, F=f, LenF =lent', R =r, LenR =lenR}, z) =
queue{W = w, F=f, LenF =lenF,R =z :: r, LenR =lenR+1}

fun head (Queug¢W =[], ...}) =raise EMPTY
| head (QueugW =z :: w,...}) ==
fun tail (Queue{W =], ...}) =raise EMPTY
| tail (Queue{W =z :: w, F =f, LenF =lenF, R =r, LenR =lenR}) =
queue{W = w, F =$tl (force f), LenF =lenF -1, R =r, LenR =lenR})
end

Figure 3.4. Amortized queues using the physicist’'s method.

Theorem 3.2 The amortized costs efioc andtail are at most two and four, respectively.

Proof: Every snoc that does not cause a rotation simply adds a new element to the rear list,
increasing k| by one and decreasing'| — | k| by one. The complete cost of theoc is one,

and the decrease in potential is at most one, for an amortized cost of at mast1l) = 2.

Every tail that does not cause a rotation removes the first element from the working list and
lazily removes the same element from the front list. This decrédgéby one and F'| — |R|

by one, which decreases the potential by at most two. The complete ¢ast isftwo, one for

the unshared costs (including removing the first element flfginand one for the shared cost

of lazily removing the head aof'. The amortized cost is therefore at most (—2) = 4.

Finally, consider anoc or tail that causes a rotation. In the initial quelg| = |R| so
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U = 0. Just before the rotationf’| = m and|R| = m + 1. The shared cost of the rotation

is 2m + 1 and the potential of the resulting queue&is. The amortized cost ofnoc is thus

1+ (2m + 1) — 2m = 2. The amortized cost ofail iS2 + (2m + 1) — 2m = 3. (The

difference is thata:l must also account for the shared cost of removing the first elemeénj of
0

Finally, we consider two variations of these queues that on the surface apeamod-
est improvements, but which actually break the amortized bounds. Thessiossiillustrate
common mistakes in designing persistent amortized data structures.

In the first variation, we observe thateckR forces F' during a rotation and installs the
result in . Wouldn't it be “lazier”, and therefore better, to never forEeuntil W becomes
empty? The answer is no, and a brief consideration of the potential function reviealdf
W were very short, then the potential would only increase|td’| after the rotation. This
increase would not be large enough to offset the large shared cost of the rotation. rAveghe
of looking at it is that, if{//| = 1 at the time of the rotation, then the front list could be forced
during the very nextail, which does not leave enough time to pay for the rotation.

In the second variation, we observe that during:&, we replacer’ with $t/ (force F).
Creating and forcing suspensions have non-trivial overheads that, e¥én)jfcan contribute
to a large constant factor. Wouldn't it be “lazier”, and therefore bettenatochangef’, but
instead to merely decremehtn F' to indicate that the element has been removed? The answer
is again no, because the removed elements would be discarded all at once whientthst
was finally forced. This would contribute to the unshared cost of the operation, ndtatrexls
cost, making the unshared cost linear in the worst case. Since the amodstedo never be
less than the unshared cost, this would also make the amortized cost linear.

3.5.2 Example: Bottom-Up Mergesort with Sharing

The majority of examples in the remaining chapters use the banker's method trethehe
physicist's method. Therefore, we give a second example of the physicist’s metteod he

Imagine that you want to sort several similar lists, suchsaand« :: xs, or zs @ zs and
ys @ zs. For efficiency, you wish to take advantage of the fact that these lists sbamaon
tails, so that you do not repeat the work of sorting those tails. We call araabdtita type for
this problem asortable collection

Figure 3.5 gives a signature for sortable collections. Note thakthefunction, which
creates an empty collection, is parameterized by the “less thaniorlan the elements to be
sorted.

Now, if we create a sortable collectiold’ by adding each of the elementsag, then we
can sort bothrs andx :: s by callingsort xs” andsort (add (x, xs")).
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signature SORTABLE =
sig
type « Sortable
val new : {Less :a x a — bool} — « Sortable ¢ sortin increasing order by Lesg
val add :« X « Sortable— « Sortable
val sort : o Sortable— « list
end

Figure 3.5: Signature for sortable collections.

One possible representation for sortable collections is balanced binary $esses. Then
add takesO(log n) worst-case time ansbrt¢ takesO(n) time. We achieve the same bounds,
but in an amortized sense, usibgttom-up mergesart

Bottom-up mergesort first splits a list inkoordered segments, where each segment initially
contains a single element. It then merges equal-sized segments in paicslyntihe segment
of each size remains. Finally, segments of unequal size are merged, frdlessitaelargest.

Suppose we take a snapshot just before the final cleanup phase. Then the sizes of all
segments are distinct powers of 2, corresponding to the one bitsTdfis is the representation
we will use for sortable collections. Then similar collections will shaltehe work of bottom-
up mergesort except for the final cleanup phase merging unequal-sized segmensnplete
representation is a suspended list of segments, each of whichdisiiah together with the
comparison function and the size.

type a Sortable ={Less :a x a — bool, Size : int, Segments list list susg

The individual segments are stored in increasing order of size, and the elemesth segment
are stored in increasing order as determined by the comparison function.

The fundamental operation on segments:is.ge, which merges two ordered lists. Except
for being parameterized dhss, this function is completely standard.

fun mergeless (s, ys) =
let fun mrg ([], ys) = ys
[ mrg (s, []) = s
| mrg (z = as, y 2 ys) = if less (x, y) thenz 2 mrg (zs, y = ys)
elsey :: mrg (z :: s, ys)
in mrg (zs, ys) end

To add a new element, we create a new singleton segment. If the smalksigegsegment
is also a singleton, we merge the two segments and continue merging until the neensegm
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is smaller than the smallest existing segment. This merging is contiofi¢lde bits ofn. If
the lowest bit ofr is zero, then we simply cons the new segment onto the segment list. If the
lowest bit is one, then we merge the two segments and repeat. Of courhes @lidone lazily.

fun add (, {Less =less, Size =size, Segments segs }) =
let fun addSeqg {eg, segs, size) =
if size mod 2 = 0then seg :: segs
elseaddSeg (mergéss (seg, hd segs), tl segs, size div 2)
in {Less =less, Size =size+1, Segments $addSeqg ([], force segs, size)} end

Finally, to sort a collection, we merge the segments from smallest to largest.

fun sort{Less =less, Segments segs, ...} =
let fun mergeAll (zs, []) = zs
| mergeAll (zs, seg :: segs) = mergeAll (mergéess (xs, seq), segs)
in mergeAll ([], forcesegs) end

Remark: mergeAll can be viewed as computing
[] X s M- N s,

wheres; is theith segment and is left-associative, infix notation for.erge. This is a specific
instance of a very common program schema, which can be written

cPhr1 DDy

for any ¢ and left-associativeb. Other instances of this schema include summing a list of
integers ¢ = 0 and@ = +) or finding the maximum of a list of natural numbeks £ 0
and® = max). One of the greatest strengths of functional languages is the ability to define
schemas like this a@sigher-order functiongi.e., functions that take functions as arguments or
return functions as results). For example, the above schema might be written

fun foldl (f, ¢, []) = ¢
| foldl (f, ¢, x :z xs) =foldl (f, f (¢, ), xs)

Thensort could be written
fun sort{Less =less, Segments segs, ...} = foldl (mergeless, [], force segs)

This also takes advantage of the fact thatrge is written as acurried function A curried
function is a multiargument function that can fertially applied(i.e., applied to just some of
its arguments). The result is a function that takes the remaining argumerttss kase, we
have appliednerge to just one of its three argumentsss. The remaining two arguments will
be supplied byold!. &
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structure BottomUpMergeSort : SRTABLE =
struct
type a Sortable ={Less :a x a — bool, Size : int, Segments list list susg

fun mergeless (xs, ys) =
let fun mrg ([], ys) = ys
| mrg (e, []) = s
| mrg (z :: s, y :: ys) =if less (z, y) then z ::mrg (zs, y i@ ys)
elsey ::mrg (z :: xs, ys)
in mrg (zs, ys) end

fun new{Less =less} = {Less =less, Size =0, Segments$] }
fun add ¢, {Less =less, Size =size, Segments segs}) =
letfun addSeg {eg, segs, size) =
if size mod 2 = Othen seg :: segs
elseaddSeg (mergéess (seg, hd segs), tl segs, size div 2)
in {Less =less, Size =size+1, Segments $addSeg ({], force segs, size)} end
fun sort{Less =less, Segments segs, ...} =
letfun mergeAll s, []) = s
| mergeAll (s, seg :: segs) = mergeAll (mergdess (zs, seg), segs)
in mergeAll ([], forcesegs) end
end

Figure 3.6: Sortable collections based on bottom-up mergesort.

The complete code for this implementation of sortable collections appears ireFddur

We show thatdd takesO(log n) amortized time andort takesO(n) amortized time using
the physicist's method. We begin by defining the potential funcforwvhich is completely
determined by the size of the collection:

U(n)=2n-—2 sz(n mod 2¢ + 1)
=0
whereb; is the:th bit of n. Note that¥(») is bounded above B and that¥(n) = 0 exactly
whenn = 2% — 1 for somek.

We first calculate the complete cost@fd. Its unshared cost is one and its shared cost is
the cost of performing the mergesdddSeg. Suppose that the lowektbits of » are one (i.e.,
b; = 1 for: < k andb, = 0). ThenaddSeg performsk merges. The first combines two lists
of size 1, the second combines two lists of size 2, and so on. Since mergingtsiaf kizem
takes2m stepsaddSeg takes(1 + 1)+ (24-2) +- - + (2871 2871y = 2(Th 1 2) = 2(2F — 1)
steps. The complete cost @fd is therefore2(2" — 1) + 1 = 21 — 1.
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Next, we calculate the change in potential. két= »n + 1 and letd, be thesth bit of »'.
Then,

U(n')—W(n) = 2n' =23 2,bi(n’ mod'Zi +1)—(2n— 22;’20 b;(n mod 2 4 1))
= 2423>72,(bi(n mod 2" + 1) — bi(n’ mod 2° + 1))
= 2oy a)

wheres(i) = b;(n mod 2' + 1) — bi(n’ mod 2 + 1). We consider three cases< k, i = k,
and: > k.

e (i < k): Sinceb;, = 1 andb; = 0, §(k) = nmod 2' + 1. Butn mod 2 = 2° — 1 s0
5(k) = 2.

e (: = k): Sinceb, = 0 andb), = 1, §(k) = —(n’ mod 2% + 1). Butn’ mod 2% = 0 so
§(k)=—1=-b,.

e (: > k) Sinceb! = b;, 5(k) = bi(n mod 2° — n’ mod 2°). Butn’ mod 2' = (n +
1) mod 2' = n mod 2° + 1 506(7) = bi(—1) = —b’.

Therefore,
U(n') = W(n) = 24232,4(i)
2425050 2 + 255, (=b)
24228 —1) -2y ¥
= okl _9p

where B’ is the number of one bits in’. Then the amortized cost efld is
(28 — 1) — (2 —2B"y =28 — 1

SinceB’ is O(log n), so is the amortized cost efid.

Finally, we calculate the amortized cost @frt. The first action ofsort is to force the
suspended list of segments. Since the potential is not necessarily zero, thi(adde the
amortized cost of the operation. It next merges the segments from smallesgéstl The
worst case is when = 2*¥ — 1, so that there is one segment of each size fiotn 2%,
Merging these segments takes

(T42)+ (1 +24+4) + (L +2+4+8) 4+ (1424 +251)
k=1 ¢ k—1

=YY= " -)=2""-4) - (k-1)=2n—k—1

=1 7=0 =1

steps altogether. The amortized costeft is thereforeD(n) + ¥U(n) = O(n).
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3.6 Related Work

Debits Some analyses using the traditional banker's method, such as Tarjan’s analysis of
path compression [Tar83], include both credits and debits. Whenever an op@ezids more
credits than are currently available, it creates a credit-debit pairimmediately spends the
credit. The debit remains as an obligation that must be fulfilled. Later, ausucpkdit may be

used to discharge the creditfAny debits that remain at the end of the computation add to the
total actual cost. Although there are some similarities between the twats kif debits, there

are also some clear differences. For instance, with the debits introdudb ichapter, any
debits leftover at the end of the computation are silently discarded.

It is interesting that debits arise in Tarjan’s analysis of path commressnce path com-
pression is essentially an application of memoization tg/#hé function.

Amortization and Persistence Until this work, amortization and persistence were thought
to be incompatible. Several researchers [DST94, Ram92] had noted thaizachdata struc-
tures could not be made efficiently persistent using existing techniques for addamj¢rece to
ephemeral data structures, such as [DSST89, Die89], for reasons sinthastocited in Sec-
tion 3.2. Ironically, these techniques produce persistent data structureswattized bounds,
but the underlying data structure must be worst-case. (These techniques haverotagohs

as well. Most notably, they cannot be applied to data structures supporting funtiibeein-
bine two or more versions. Examples of offending functions include list catenatiosednd
union.)

The idea that lazy evaluation could reconcile amortization and persistiesicappeared,
in rudimentary form, in [Oka95c]. The theory and practice of this technique wéssiudevel-
oped in [Oka95a, Oka96b].

Amortization and Functional Data Structures In his thesis, Schoenmakers [Sch93] studies
amortized data structures in a strict functional language, concentrating roalfderivations

of amortized bounds using the traditional physicist’s method. He avoids the problems of per
sistence by insisting that data structures only be used in a single-threatiezhta

Queues Gries [Gri81, pages 250-251] and Hood and Melville [HM81] first proposed the
gueues in Section 3.1.1. Burton [Bur82] proposed a similar implementation, hawithe
restriction that the front list be non-empty whenever the queue is non-empty. (Rondrines
head andtail into a single operation, and so does not require this restriction to suppoit
efficiently.) The queues in Section 3.4.2 first appeared in [Oka96b].

There is a clear analogy here to the spontaneous creatiomatgl annihilation of particle-antiparticle pairs
in physics. In fact, a better name for these debits might b&ceedits”.
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Time-Analysis of Lazy Programs Several researchers have developed theoretical frame-
works for analyzing the time complexity of lazy programs [BH89, San90, San95, Wad38].
However, these frameworks are not yet mature enough to be useful in practieaiffculty

is that these frameworks are, in some ways, too general. In each of themmsythe cost of

a program is calculated with respect to some context, which is a descrgittwow the result

of the program will be used. However, this approach is often inappropriate forteodwbgy

of program development in which data structures are designed as abstract datalyse
behavior, including time complexity, is specified in isolation. In contrast, oaly@es prove
results that are independent of context (i.e., that hold regardless of how therdatarss are
used).



Chapter 4

Eliminating Amortization

Most of the time, we do not care whether a data structure has amortized bounds ecagarst
bounds; our primary criteria for choosing one data structure over another arel efecedncy
and simplicity of implementation (and perhaps availability of source codeyesder, in some
application areas, it is important to bound the running times of individual operatiath&rr
than sequences of operations. In these situations, a worst-case data stuittoiten be
preferable to an amortized data structure, even if the amortized ttatause is simpler and
faster overall. Raman [Ram92] identifies several such applicateasamcluding

¢ Real-time systems: In real-time systems, predictability is more important than raw
speed [Sta88]. If an expensive operation causes the system to miss a hdlidedlea
it does not matter how many cheap operations finished well ahead of schedule.

o Parallel systems:If one processor in a synchronous system executes an expensive oper-
ation while the other processors execute cheap operations, then the other pscessor
sit idle until the slow processor finishes.

¢ Interactive systems:Interactive systems are similar to real-time systems — users ofte
value consistency more than raw speed [But83]. For instance, users mightifiefe-
second response times to 99 0.25-second response times and 1 25-second response time,
even though the latter scenario is twice as fast.

Remark: Raman also identified a fourth application area — persistent data seacis dis-
cussed in the previous chapter, amortization was thought to be incompatible vaisigece.
But, of course, we now know this to be untrue. &

Does this mean that amortized data structures are of no interest to progranmthese
areas? Not at all. Since amortized data structures are often sirhpleworst-case data struc-
tures, it is sometimes easier to design an amortized data structuté¢han convert it to a
worst-case data structure, than to design a worst-case data struotarsdatch.
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In this chapter, we descrilszheduling— a technique for converting many lazy amortized
data structures to worst-case data structures by systematicallpddazly components in such
a way that no suspension ever takes very long to execute. Scheduling exteydsbgeetrwith
an extra component, calledsghedulethat regulates the order in which the lazy components
of that object are forced.

4.1 Scheduling

Amortized and worst-case data structures differ mainly in when the cotmmsaacharged to a
given operation occur. In a worst-case data structure, all computations dharge operation
occur during the operation. In an amortized data structure, some computationsdctarge
an operation may actually occur during later operations. From this, we seweirtiuzly all
nominally worst-case data structures become amortized when implemaraecntirely lazy
language because many computations are unnecessarily suspended. To describestrue wor
case data structures, we therefore need a strict language. If we wantiibddé®mth amortized
and worst-case data structures, we need a language that supports both lazgtediiation.
Given such a language, we can also consider an intriguing hybrid approach: wsgdata
structures that use lazy evaluation internally. We will obtain such datatares by beginning
with lazy amortized data structures and modifying them in such a way tleay @peration
runs in the allotted time.

In a lazy amortized data structure, any specific operation might take ldmngethe stated
bounds. However, this only occurs when the operation forces a suspension that hasideen pa
off, but that takes a long time to execute. To achieve worst-case bounds, weumaugntee
that every suspension executes in less than the allotted time.

Define theintrinsic costof a suspension to be the amount of time it takes to force the
suspension under the assumption that all other suspensions on which it depends have already
been forced and memoized, and therefore each take(ilytime to execute. (This is similar
to the definition of the unshared cost of an operation.) The first step in convartiagnortized
data structure to a worst-case data structure is to reduce the intrinsicf @&ry suspension
to less than the desired bounds. Usually, this involves rewriting expensimelithic functions
as incremental functions. However, just being incremental is not always good enretigé
granularity of each incremental function must be sufficiently fine. Typicalgh fragment of
an incremental function will have an(1) intrinsic cost.

Even if every suspension has a small intrinsic cost, however, some suspensght still
take longer than the allotted time to execute. This happens when one suspension depends on
another suspension, which in turn depends on a third, and so on. If none of the suspensions
have been previously executed, then forcing the first suspension will resultascade of
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forces. For example, consider the following computation:
(- ((s1 #52) #s3) H--) 5

+ is the canonical incremental function on streams. It does only one step of thedagipe
time, and each step has éxl) intrinsic cost. However, it also forces the first node of its left
argument. In this example, forcing the first node of the stream returned by the ostetm
forces the first node of the stream returned by the next +, and so on. Altogethegkitass
O(k) time to execute (or even more if the first nodespis expensive to force).

The second step in converting an amortized data structure to a woestiats structure
is to avoid cascading forces by arranging that, whenever we force a suspensioothar
suspensions on which it depends have already been forced and memoized. Then, nosuspensi
takes longer than its intrinsic cost to execute. We accomplish this by systathy scheduling
the execution of each suspension so that each is ready by the time we nelee iticK is to
regard paying off debt as a literal activity, and to force each suspensiorsasid for.

We extend every object with an extra component, callegthedulethat, at least concep-
tually, contains a pointer to every unevaluated suspension in the object. (Sdhgesofspen-
sions in the schedule may have already been evaluated in a different lagiga, fout forcing
these suspensions a second time does no harm since it can only make our algorithstgrun fa
than expected, not slower.) Every operation, in addition to whatever othepuoiatons it
performs on an object, forces the first few suspensions in the schedule. The exaetr mim
suspensions forced is governed by the amortized analysis; typically, evgpgrssion takes
O(1) time to execute, so we force a number of suspensions proportional to the amootted ¢
of the operation. Depending on the data structure, maintaining the schedule can b&iabn-tri
For this technique to apply, adding new suspensions to the schedule, or retrieving the next
suspension to be forced, cannot require more time than the desired worst-case bounds.

4.2 Real-Time Queues

As an example of this technique, we convert the amortized banker’s queues ohS24tP to
worst-case queues. Queues such as these that support all operatign$ worst-case time
are calledeal-time queuefHM81].

In the original data structure, queues are rotated using Hramasc. Sincercverse IS
monolithic, our first task is finding a way to perform rotations incrementalhys Tan be done
by executing one step of the reverse for every step of the #+. We define a funetion such
that

rotate (f, r, a) = f + reverser #+ «

Then
rotate (f, r, $Nil) = [/ + reverser
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The extra argument is called araccumulating parameteand is used to accumulate the partial
results of reversing. Itis initially empty.

Rotations occur whehR| = |F| + 1, so initially |»| = |f| + 1. This relationship is
preserved throughout the rotation, so wifeis empty,» contains a single element. The base
case is therefore

rotate @GNil, $Cons (y, $Nil), a) (BNil) + reverse $Cons (y, $Nil)) + a

$Cons y, a)

In the recursive case,

rotate $Cons (, /), $Cons , r), «) = ($Cons ¢, f)) # reverse $Cons (y, r)) # a
$Cons (¢, / + reverse$Cons (y, r)) # a)
$Cons , f + reverse- # $Cons ¢, a))
$Cons (, rotate ¢, », $Cons (, a)))

The complete code famtate is

fun rotate (, r, a) = $case(f, r) of
(BNil, $Cons (y, .)) = Cons (, a)
| ($Cons ¢, /), $Cons (, r')) = Cons , rotate (', r’, $Cons (y, a)))

Note that the intrinsic cost of every suspension createdobyte is O(1). Just rewriting the
pseudo-constructofueue to call rotate (f, r, $Nil) insteadf + reverse r, and making no
other changes, already drastically improves the worst-case behavior of the apsna¢ions
from O(n) to O(log n) (see [Oka95c]), but we can further improve the worst-case behavior to
O(1) using scheduling.

We begin by adding a schedule to the datatype. The original datatype is
datatype o Queue = QueuéF : « Stream, LenF : int, Ra Stream, LenR : int

We add a new fieldb of type o Stream that represents a schedule for forcing the nodes of
I'. S is some suffix off" such that all the nodes befofein /' have already been forced and
memoized. To force the next suspensiorFiywe simply inspect the first node 6f

Besides adding, we make two further changes to the datatype. First, to emphasize the fact
that the nodes of? need not be scheduled, we chadgéom a stream to a list. This involves
minor changes teotate. Second, we eliminate the length fields. As we will see shortly, we no
longer need the length fields to determine whighecomes longer thali — instead, we will
obtain this information from the schedule. The new datatype is thus

datatype o Queue = Queusef {F : a stream, R « list, S : « streanj

Now, the major queue functions are simply
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structure RealTimeQueue : QeUE =
struct
datatype oo Queue = Queusef {F : « stream, R w list, S : « strean}
(x Invariant: |S| = |F| — |R| *)

exceptionEMPTY

val empty = QueudF =$Nil, R =[], S = $Nil }
fun isEmpty (QueudF =f,...}) =null f

fun rotate (, r, a) = $case(f, r) of
($Nil, $Cons ¢, -)) = Cons , a)
| ($Cons ¢, f), $Cons (, ')) = Cons , rotate (', r’, $Cons ¢, a)))

fun queue{F =/, R=r, S=3$Cons ¢, s)} = Queue{F=f,R=r,S=s}

| queue{F =f, R =r, S =$Nil } = letval ' = rotate (, r, $Nil)

in Queue{F=f',R=[],S=f"} end

fun snoc (QueudF=f, R=r,S=s},z)=queuefF=f,R=2::1r,S=s}
fun head (QueugF =3$Nil, ... }) = raise EMPTY

| head (QueugF =$Cons ¢, f),...}) ==
fun tail (Queue{F =$Nil, ... }) = raise EMPTY

| tail (Queue{F =$Cons ¢, /), R=r,S=s})=queue(F=f,R=r, S=s}

end

Figure 4.1: Real-time queues based on scheduling [Oka95c].

fun snoc (QueudF =f,R=r,S=s},z)=queue(F=f,R=z = r,S=s}
fun head (Queu¢F =$Cons ¢, /), ...}) =«
fun tail (Queue{F =$Cons ¢, /), R=r, S=s}) =queue{F =/, R=r, S =5}

The pseudo-constructgreue maintains the invariant that| = |F'| — | R| (which incidentally
guarantees thgt’| > |R| since|S| cannot be negative)snoc increasegki| by one andiail
decrease$l'| by one, so wherueue is called,|S| = |F| — |R| + 1. If S is non-empty, then
we restore the invariant by simply taking the tailofIf S is empty, thenk is one longer than
F', so we rotate the queue. In either case, inspeciitg determine whether or not it is empty
forces and memoizes the next suspension in the schedule.

fun queue{F=f,R=r, S =%$Cons (, s)} = Queue{F=f,R=r,S =s}
| queue{F =f, R=r, S =%Nil} =let val /' = rotate (, r, $Nil)
in Queue{F =/, R=[],S=/"} end

The complete code for this implementation appears in Figure 4.1.
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In the amortized analysis, the unshared cost of every queue operaéin)is Therefore,
every queue operation does orfly 1) work outside of forcing suspensions. Hence, to show
that all queue operations run i 1) worst-case time, we must prove that no suspension takes
more thanD(1) time to execute.

Only three forms of suspensions are created by the various queue functions.

e $Nil is created byempty and queue (in the initial call to rotate). This suspension is
trivial and therefore executes (1) time regardless of whether it has been forced and
memoized previously.

e $Cons (y, a) is created in the second line eftate and is also trivial.

e Every call torotate immediately creates a suspension of the form

$case(f, r, a) of
($Nil, [y], @) = Cons , a)
| ($Cons ¢, f7), y :: 7, a) = Cons ¢, rotate (', ', $Cons ¢, a)))

The intrinsic cost of this suspension@§1). However, it also forces the first node of
f, creating the potential for a cascade of forces. But notefthsia suffix of the front
stream that existed just before the previous rotation. The treatment of the selSedul
guarantees thaverynode in that stream was forced and memoized prior to the rotation.
Forcing the first node of simply looks up that memoized valuedr(1) time. The above
suspension therefore takes onlyl) time altogether.

Since every suspension execute$lifi) time, every queue operation takes onlyl ) worst-
case time.

Hintto Practitioners: These queues are not particularly fast when used ephemerally, bgcause
of overheads associated with memoizing values that are never lookedrgtlagaire the fastejjt
known real-time implementation when used persistently.

4.3 Bottom-Up Mergesort with Sharing

As a second example, we modify the sortable collections from Section 3.5.2 to sugpan
O(log n) worst-case time ansbrt in O(n) worst-case time.

The only use of lazy evaluation in the amortized implementation is the suspeadled
to addSeg in add. This suspension is clearly monolithic, so the first task is to perform this
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computation incrementally. In fact, we need only makerge incremental; sinceiddSeq
takes onlyO(log n) steps, we can afford to execute it strictly. We therefore represgmients
as streams rather than lists, and eliminate the suspension on the oallecsegments. The
new type for theSegments field is thusa Stream list rather thany list list susp.

Rewriting merge, add, andsort to use this new type is straightforward, except thatt
must convert the final sorted stream back to a list. This is accomplish&telyream ToList
conversion function.

fun streamToList $Nil) =[]
| streamToList$Cons (, xs)) = = :: streamToListrs

The new version ofrnerge, shown in Figure 4.2, performs one step of the merge at a time,
with an O(1) intrinsic cost per step. Our second goal is to execute enough merge steps per
add to guarantee that any sortable collection contains @nly) unevaluated suspensions.
Thensort executes at most(n) unevaluated suspensions in addition to its @) work.
Executing these unevaluated suspensions takes at@tasttime, sosort takes onlyO(n)
time altogether.

In the amortized analysis, the amortized cost@f was approximatelg3’, whereB’ is
the number of one bits in” = n + 1. This suggests thatid should execute two suspensions
per one bit, or equivalently, two suspensions per segment. We maintain a sesghstale for
each segment. Each schedule isnafitream list containing the partial results of the merge
sequence that created this segment. The complete type is therefore

type o Schedule = Stream list
type a Sortable ={Less :a x a — bool, Size : int, Segments & (Streamx « Schedule) list

To execute one merge step from a schedule, we call the functien.

fun execl [] =[]
| execl (BNil) :: sched) = execlsched
| execl ($Cons (@, xs)) :: sched) = as . sched

In the second clause, we reach the end of one stream and execute the ficdt thiemext
stream. This cannot loop because only the first stream in a schedule can evaptge Ehe
functionexzec2PerSeg invokeSezec! twice per segment.

fun exec2PerSeg [] =[]
| exec2PerSeqg {£, sched) :: segs) = (vs, execl (execkched)) :: exec2PerSegegs

Now, add calls exec2PerSeg, but it is also responsible for building the schedule for the new
segment. If the lowest bits of n are one, then adding a new element will triggenerges, of
the form

((s0 ™ 51) M sp) M-+ X sy,
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wheres, is the new singleton segment and . . s; are the first: segments of the existing col-
lection. The partial results of this computation afe. . s}, wheres{, = sq ands, = s/_; X s;.
Since the suspensionsdhdepend on the suspensions:jn,, we must schedule the execution
of s;_, before the execution of. The suspensions ij also depend on the suspensions;in
but we guarantee that . . . s, have been completely evaluated at the time of the callith

The final version ofzdd, that creates the new schedule and executes two suspensions per
segment, is

fun add ¢, {Less =less, Size =size, Segments segs }) =
let fun addSeg (s, segs, size, rsched) =
if size mod 2 = 0then (zs, rev (vs :: rsched)) :: segs
else let val((zs', []) :: segs’) = segs
in addSeg (mergéss (s, xs'), segs’, size div 2, xs 2 rsched)
val segs’ = addSeg$Cons (¢, $Nil), segs, size, [])
in {Less =less, Size =size+1, Segments = exec2PerSegs’} end

The accumulating parameteiched collects the newly merged streams in reverse order. There-
fore, we reverse it back to the correct order on the last step. The pat&tahim line 4 asserts
that the old schedule for that segment is empty, i.e., that it has already tegretely exe-
cuted. We will see shortly why this true.

The complete code for this implementation is shown in Figure 44 has an unshared
cost of O(log n) and sort has an unshared cost 6f(n), so to prove the desired worst-case
bounds, we must show that thi&log n) suspensions forced byld takeO(1) time each, and
that theO(n) unevaluated suspensions forcedsby: takeO(n) time altogether.

Every merge step forced bydd (throughezec2PerSeg andexecl) depends on two other
streams. If the current step is part of the streanthen it depends on the strearis, ands;.
The streams’_, was scheduled beforg, sos. ;, has been completely evaluated by the time
we begin evaluating.. Furthermores; was completely evaluated before tix/ that created
s;. Since the intrinsic cost of each merge steid ), and the suspensions forced by each
step have already been forced and memoized, every merge step foreéd takes onlyO(1)
worst-case time.

The following lemma establishes both that any segment involved in a mergéibyy has
been completely evaluated and that the collection as a whole contains & mosinevaluated
suspensions.

Lemma 4.1 In any sortable collection of size, the schedule for a segment of size= 2*
contains a total of at mostm — 2(n mod m + 1) elements.

Proof: Consider a sortable collection of size where the lowest bits of » are ones (i.en
can be writter:2**+! 4 (2% — 1), for some integer). Thenadd produces a new segment of size
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structure ScheduledBottomUpMergeSort DETABLE =
struct
type o Schedule = Stream list
type o Sortable ={Less :a x a — bool, Size : int, Segments «(Streamx « Schedule) list

fun mergeless (xs, ys) =
letfun mrg $Nil, ys) = ys
| mrg (zs, $Nil) = zs
| mrg (zs as $Cons @, xs’), ys as Kons (, ys')) =
if less (z, y) then $Cons ¢, mrg (zs’, ys))
else £ons (y, mrg (zs, ys'))
in mrg (zs, ys) end

fun execl []=1]
| execl (BNil) :: sched) = execlsched
| execl ($Cons ¢, xs)) :: sched) = xs :: sched
fun exec2PerSeg []1 =]
| exec2PerSeq (, sched) :: segs) = (xs, execl (execkched)) :: exec2PerSegegs

fun new{Less =less} = {Less =less, Size =0, Segments =[]
fun add ¢, {Less =less, Size =size, Segments segs}) =
letfun addSeg £s, segs, size, rsched) =
if size mod 2 = Othen (xs, rev (vs :: rsched)) :: segs
else let val((zs’, []) :: segs’) = segs
in addSeg (mergéess (s, xs'), segs’, size div 2, xs :: rsched)
val segs’ = addSeg%Cons ¢, $Nil), segs, size, [])
in {Less =less, Size =size+1, Segments = exec2PerSegs’} end
fun sort{Less =less, Segments segs, ...} =
letfun mergeAll s, []) = s
| mergeAll (s, (xs', sched) :: segs) = mergeAll (mergdess (zs, zs'), segs)
fun streamToList $Nil) =[]
| streamToList$Cons ¢, «s)) = = :: streamToLists
in streamToList (mergeAll§Nil, segs)) end
end

Figure 4.2: Scheduled bottom-up mergesort.

m = 2¥, whose schedule contains streams of sizés4, . . . , 2*. The total size of this schedule
is 2kt — 1 = 2m — 1. After executing two steps, the size of the schedubis- 3. The size of
the new collectionis’ = n+1 = 2" 4+2%, Since2m—3 < 2m—2(n’ mod m+1) = 2m—2,
the lemma holds for this segment.

Every segment of size:’ larger thanm is unaffected by thedd, except for the execution
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of two steps from the segment’s schedule. The size of the new schedule is bounded by
2m’ —2(n mod m’' + 1) — 2 = 2m' — 2(n' mod m’ + 1),
so the lemma holds for these segments as well. O

Now, whenever thé lowest bits ofn. are ones (i.e., whenever the next/ will merge the
first £ segments), we know by Lemma 4.1 that, for any segment ofisize2', where: < £,
the number of elements in that segment’s schedule is at most

2m —2(nmodm+1)=2m —-2((m—-1)4+1) =10

In other words, that segment has been completely evaluated.
Finally, the combined schedules for all segments comprise at most

23 52" — (nmod 2° + 1)) = 2n — 23 b(n mod 2 + 1)
1=0 1=0
elements, wheré; is the:th bit of n. Note the similarity to the potential function from the
physicist’s analysis in Section 3.5.2. Since this total is boundedrhythe collection as a

whole contains only)(») unevaluated suspensions, and therefore takes onlyO(rn) worst-
case time.

4.4 Related Work

Eliminating Amortization Dietz and Raman [DR91, DR93, Ram92] have devised a frame-
work for eliminating amortization based @ebble gamesvhere the derived worst-case algo-
rithms correspond to winning strategies in some game. Others have used adhrques
similar to scheduling to eliminate amortization from specific data stres such aselaxed
heaps|[DGST88] andimplicit binomial queue$CMP88]. The form of scheduling described
here was first applied to queues in [Oka95c] and later generalized in [Oka96D].

Queues The queue implementation in Section 4.2 first appeared in [Oka95c]. Hood and
Melville [HM81] presented the first purely functional implementation of rele queues,
based on a technique knownglsbal rebuilding[Ove83], which will be discussed further in

the next chapter. Their implementation does not use lazy evaluation and is mqoeczded

than ours.



Chapter 5

Lazy Rebuilding

The next four chapters describe general techniques for designing functional data egudter
begin in this chapter withazy rebuilding a variant ofglobal rebuilding[Ove83].

5.1 Batched Rebuilding

Many data structures obey balance invariants that guarantee efficieasa¢be canonical ex-
ample is balanced binary search trees, which improve the worst-casaguime of many tree
operations from the&)(n) required by unbalanced trees@log »). One approach to main-
taining a balance invariant is to rebalance the structure after everyaupéat most balanced
structures, there is a notion pérfect balancewhich is a configuration that minimizes the cost
of subsequent operations. However, since it is usually too expensive to reste palance
after every update, most implementations settle for approximations of pbekctce that are
at most a constant factor slower. Examples of this approach include AVL #&$2] and
red-black trees [GS78].

However, provided no update disturbs the balance too drastically, an atralternative
is to postpone rebalancing until after a sequence of updates, and then to rebalagt@re¢he
structure, restoring it to perfect balance. We call this apprdetbhed rebuilding Batched
rebuilding yields good amortized time bounds provided that (1) the data structure ebndt r
too often, and (2) individual updates do not excessively degrade the performance oplater
erations. More precisely, condition (1) states that, if one hopes to achieve a tiot(d(r))
amortized time per operation, and the global transformation requifeé:)) time, then the
global transformation cannot be executed any more frequently than evety.)/ f(n) oper-
ations, for some constant For example, consider binary search trees. Rebuilding a tree to
perfect balance takeS(n) time, so if one wants each operation to takdog ») amortized



50 Lazy Rebuilding

time, then the data structure must not be rebuilt more often than everylog n operations,
for some constant

Assume that a data structure is to be rebuilt every;(n)/f(n) operations, and that an
individual operation on a newly rebuilt data structure requitég(n)) time (worst-case or
amortized). Then, condition (2) states that, after uptg(n)/ f(n) updates to a newly rebuilt
data structure, individual operations must still take afilyf(»)) time (i.e., the cost of an indi-
vidual operation can only degrade by a constant factor). Update functions satisfyingaondi
(2) are calledveak updates

For example, consider the following approach to implementing a delete functiomarybi
search trees. Instead of physically removing the specified node from thdeage it in the
tree but mark it as deleted. Then, whenever half the nodes in the tree have eted,drake
a global pass removing the deleted nodes and restoring the tree to perfect b&larsehis
approach satisfy both conditions, assuming we want deletions téXake »n ) amortized time?

Suppose a tree containsodes, up to half of which are marked as deleted. Then removing
the deleted nodes and restoring the tree to perfect balance @gk¢dime. We execute the
transformation only ever)]gn delete operations, so condition (1) is satisfied. In fact, condition
(1) would allow us to rebuild the data structure even more often, as oftereage n/logn
operations. The naive delete algorithm finds the desired node and marks it as déleted.
takesO(log n) time, even if up to half the nodes have been marked as deleted, so condition
(2) is satisfied. Note that even if half the nodes in the tree are markedetsdigthe average
depth per active node is only about one greater than it would be if the deleted nodes had been
physically removed. This degrades each operation by only a constant additive féotreas
condition (2) allows for each operation to be degraded by a constant multipfidaitor.
Hence, condition (2) would allow us to rebuild the data structure even less. oft

In the above discussion, we described only deletions, but of course binary sesesh t
typically support insertions as well. Unfortunately, insertions arewedkbecause they can
create a deep path very quickly. However, a hybrid approach is possible, an wisertions
are handled by local rebalancing after every update, as in AVL trees or ae#l-blees, but
deletions are handled via batched rebuilding.

As a second example of batched rebuilding, consider the batched queues of Section 3.1.1.
The global rebuilding transformation reverses the rear list into the frsiptréstoring the queue
to a state of perfect balance in which every element is contained indghelist. As we have
already seen, batched queues have good amortized efficiency, but only when usedrajfihe
Under persistent usage, the amortized bounds degrade to the cost of the rebuildfiogtrans
tion because it is possible to trigger the transformation arbitrarily oftefact, this is true for
all data structures based on batched rebuilding.
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5.2 Global Rebuilding

Overmars [Ove83] developed a technique for eliminating the amortizateon batched re-
building. He called this techniqugobal rebuilding The basic idea is to execute the rebuilding
transformation incrementally, performing a few steps per normal operatibis. CBn be use-
fully viewed as running the rebuilding transformation as a coroutine. The tpekiyof global
rebuilding is that the coroutine must be started early enough that it can finigtelinte the
rebuilt structure is needed.

Concretely, global rebuilding is accomplished by maintaining two copies of elajeact.
The primary, orworking copy is the ordinary structure. The secondary copy is the one that
is gradually being rebuilt. All queries and updates operate on the working copy. When t
secondary copy is completed, it becomes the new working copy and the old working copy is
discarded. A new secondary copy might be started immediately, or the objectamgayn for
a while without a secondary structure, before eventually starting the nextdielguphase.

There is a further complication to handle updates that occur while the secondaryscopy i
being rebuilt. The working copy will be updated in the normal fashion, but the seconoiayy c
must be updated as well or the effect of the update will be lost when the secondarakepy t
over. However, the secondary copy will not in general be represented in atti@tncan be
efficiently updated. Thus, these updates to the secondary copy are buffered entt:@xa
few at a time, after the secondary copy has been rebuilt, but before it tedeeasothe working

copy.

Global rebuilding can be implemented purely functionally, and has been sdvees.
For example, the real-time queues of Hood and Melville [HM81] are based oretiisiue.
Unlike batched rebuilding, global rebuilding has no problems with persistencee 8mone
operation is particularly expensive, arbitrarily repeating operations hadfact on the time
bounds. Unfortunately, global rebuilding is often quite complicated. In partiaeresenting
the secondary copy, which amounts to capturing the intermediate state of a cqroatirie
quite messy.

5.3 Lazy Rebuilding

The implementation of queues in Section 3.5.1, based on the physicist's methoakely cl
related to global rebuilding, but there is an important difference. As in gl@alilding, this
implementation keeps two copies of the front list, the working cdpynd the secondary copy
I, with all queries being answered by the working copy. Updatess {oe., tail operations)
are buffered, to be executed during the next rotation, by writing

... F=8%tl (forcef) ...
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In addition, this implementation takes care to start (or at least set up)ttiteon long before its
result is needed. However, unlike global rebuilding, this implementation doesxaotitehe
rebuilding transformation (i.e., the rotation) concurrently with the normatatpens; rather, it
pays forthe rebuilding transformation concurrently with the normal operations, but tken e
cutes the transformation all at once at some point after it has been paid éssénce, we have
replaced the complications of explicitly or implicitly coroutining the rebuilgliransformation
with the simpler mechanism of lazy evaluation. We call this variant of glodalildinglazy
rebuilding

The implementation of queues in Section 3.4.2, based on the banker's method, reveals
a further simplification possible under lazy rebuilding. By incorporating nesisgessions
into the basic data structure — for instance, by using streams insteadsoHiste can often
eliminate the distinction between the working copy and the secondary copy and erspigiea
structure that combines aspects of both. The “working” portion of that structure is thihat
has already been paid for, and the “secondary” portion is the part that has not yet lackm. pa

Global rebuilding has two advantages over batched rebuilding: it is suitablaptement-
ing persistent data structures and it yields worst-case bounds rather tharzathbdunds.
Lazy rebuilding shares the first advantage, but, at least in its sinmfplest yields amortized
bounds. However, if desired, worst-case bounds can often be recovered usimipedels
ing techniques of Chapter 4. For example, the real-time queues in Section 4.2 cdazlyine
rebuilding with scheduling to achieve worst-case bounds. In fact, when &nmyilding is
combined with scheduling, it can be viewed as an instance of global rebuilding ain e
coroutines are reified in a particularly simple way using lazy evaluation.

5.4 Double-Ended Queues

As further examples of lazy rebuilding, we next present several implemensatif double-
ended queues, also known dsques Deques differ from FIFO queues in that elements can
be both inserted and deleted from either end of the queue. A signature for deques appears
Figure 5.1. This signature extends the signature for queues with three new funetiongén-

sert an element at the fronf},st (return the rearmost element), andt (remove the rearmost
element).

Remark: Note that the signature for queues is a strict subset of the signature for deques — the
same names have been chosen for the types, exceptions, and overlapping funcianse Be
deques are thus a strict extension of queues, Standard ML will allow us to use aleduie
wherever a queue module is expected. &
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signature DEQUE =
sig
type o Queue
exceptionEMPTY

valempty o Queue
val isEmpty : o« Queue— bool

(* insert, inspect, and remove the front elemeit

val cons i X o Queue— o Queue

valhead o Queue— « (x raisesEMPTY if queue is empty)
val tail » o Queue— o Queue ¢ raiseseEMPTY if queue is empty)

(* insert, inspect, and remove the rear elemeit
valsnoc o Queuex o — a Queue

val last to Queue— « (x raisesEmMPTY if queue is empty)
val init o Queue— o Queue ¢ raiseseEMPTY if queue is empty)
end

Figure 5.1: Signature for double-ended queues.

5.4.1 Output-restricted Deques

First, note that extending the queue implementations from Chapters 3 and 4 to support
in addition tosnoc, is trivial. A queue that supports insertions at both ends, but deletions from
only one end, is called avutput-restricted deque

For example, we can implementns for the banker’'s queues of Section 3.4.2 as follows:

fun cons ¢, Queue{F =/, LenF =lenF, R =r, LenR =lenk}) =
Queue{F =$Cons ¢, f), LenF =lenF+1, R =r, LenR =lenR}

Note that we invoke the true construct@r.cue rather than the pseudo-constructeeue be-
cause adding an elementfocannot possibly makeé shorter than?.

Similarly, we can easily extend the real-time queues of Section 4.2.

fun cons ¢, Queue{F =f, R=r,S=s}) =
Queue{F =$Cons ¢, f), R=r, S=3Cons {, s)})

We addz to S only to maintain the invariant that| = |F'| — |R|. Again, we invoke the true
constructorQueue rather than the pseudo-construciorue.
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5.4.2 Banker's Deques

Deques can be represented in essentially the same way as queues, asame gbr lists)
and R, plus some associated information to help maintain balance. For queues, threafoti
perfect balance is for all the elements to be in the front stream. For defaemtion of perfect
balance is for the elements to be evenly divided between the front and reanstr8ince we
cannot afford to restore perfect balance after every operation, we ik $er guaranteeing
that neither stream is more than abeuimes longer than the other, for some constant 1.
Specifically, we maintain the following balance invariant:

|F|<c¢R|+1 AN |R| <¢|lF|+1

The “+1” in each term allows for the only element of a singleton queue to be stordther
stream. Note that both streams will be non-empty whenever the queue contaiast dtvie
elements. Whenever the invariant would otherwise be violated, we restayedhe to perfect
balance by transferring elements from the longer stream to the shortenstrgéboth streams
have the same length.

Using these ideas, we can adapt either the banker’s queues of Section 3.4.2 or ttistfshysi
queues of Section 3.5.1 to obtain deques that support every operatigh)immortized time.
Because the banker’s queues are slightly simpler, we choose to begin with pherniemtation.

The type of double-ended queues is precisely the same as for ordinary queues.
datatype o Queue = QueuéF : « Stream, LenF : int, Ra Stream, LenR : int
The functions on the front element are defined as follows:

fun cons (QueudF =/, LenF =lent', R =r, LenR =lenR}, 2) =
queue{F =$Cons (, /), LenF =lenF+1, R =r, LenR =lenR}
fun head (QueugF =$Nil, R=3%Cons ¢, _), ...} =«
| head (QueugF =$Cons ¢, f),...}) =«
fun tail (Queue{F =3$Nil, R = $Cons ¢, _), ...} = empty
| tail (Queue{F =$Cons (, f), LenF =lenF, R =r, LenR =lenR}) =
queue{F =f, LenF =lenF'—1, R=r, LenR =lenR}

The first clauses ofcad andtail handle singleton queues where the single element is stored
in the rear stream. The functions on the rear elemeniree, last, andinit — are defined
symmetrically onk rather than/'.

The interesting portion of this implementation is the pseudo-constryetat, which re-
stores the queue to perfect balance when one stream becomes too long by firstniguncat
the longer stream to half the combined length of both streams and then trangféei re-
maining elements of the longer stream onto the back of the shorter stream. Fglexdm
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|F'| > ¢|R| + 1, thenqueue replaces” with take (i, F') and R with R + reverse (drop (i, I)),
where: = |(|F| + |R|)/2]. The full definition ofqueue is

fun queue ¢ as{F =/, LenF =lenF,R =r, LenR =lenR}) =
if lenf’ > cxlenR + 1then
letval i = (lenF + lenR) div 2 valj =lenF + lenR — i
val /' =take (, f) val ' = r # reverse (dropi( f))
in Queue{F =f’, LenF =i, R =+/, LenR =} end
else iflenR > cxlenk + 1then
letval i = (lenF + lenR) div 2 valj =lenF + lenR — i
val /' = [ + reverse (dropj(, r)) val ' = take (, r)
in Queue{F =f’, LenF =i, R =+/, LenR =} end
elseQueuey

The complete implementation appears in Figure 5.2.

Remark: Because of the symmetry of this implementation, we can reverse a deque)in
time by simply swapping the roles éf and i.

fun reverse (Queu¢F =/, LenF =lenF', R =r, LenR =lenR}) =
Queue{F =r, LenF =lenR, R=f, LenR =lenf'}

Many other implementations of deques share this property [Ho092b, CG93]. Ratherthan es
sentially duplicating the code for the functions on the front element and the functiomgon t
rear element, we could define the functions on the rear element in termsecoke and the
corresponding functions on the front element. For example, we could implemeiats

fun init ¢ = reverse (tail (reverse))
Of course,init will be slightly faster if implemented directly. <&

To analyze these deques, we again turn to the banker's method. For both the frontand rea
streams, let/(:) be the number of debits on elememtf the stream, and le0(:) = 3" _, d(j).
We maintain the debit invariants that, for both the front and rear streams,

D) <min(ci4t,es +1—1)

wheres = min(|F|, |R|) andt = max(|F|,|R|). SinceD(0) = 0 for both streams, we can
always access the first and last elements of the queuewibor last.

Theorem 5.1 cons and tail (Symmetrically,snoc and init) maintain the debit invariants on
both the front and rear streams by discharging at mioahdc + 1 debits per stream, respec-
tively.



56 Lazy Rebuilding

functor BankersDequev@l ¢ : int) : DEQUE = (x ¢>1 %)
struct
datatype oo Queue = QueuéF : o Stream, LenF : int, Raw Stream, LenR : int
(x Invariants: |[F| < ¢|R|+ 1, |R| < ¢|F| + 1, LenF= |F|, LenR= |R] %)

exceptionEMPTY

val empty = Queud F =$Nil, LenF = 0, R =$Nil, LenR = 0}
fun isEmpty (QueudLenF =lenF, LenR =lenR, ...}) = (lenF'+lenR = 0)

fun queue ¢ as{F =f, LenF =lenF, R =r, LenR =lenR}) =
if lent’ > cxlenR + 1then
let val ¢ = (lenF’ + lenR) div 2 valj =lenF +lenR — i
val /' = take ¢, f) val v’ = r # reverse (dropi( f))
in Queue{F =f’, LenF =i, R=r', LenR =} end
else iflenR > exlent + 1then
let val ¢ = (lenF’ + lenR) div 2 valj =lenF +lenR — i
val f/ = f + reverse (dropj( r)) val ' = take (, r)
in Queue{F =f’, LenF =i, R=7', LenR =} end
elseQueuey

fun cons (QueudF =f, LenF =lenF', R =r, LenR =lenR}, z) =
queue{F =$Cons ¢, f), LenF =lenF+1, R =r, LenR =lenR}
fun head (Queué¢F = $Nil, R = $Nil, ... }) = raise EMPTY
| head (QueugF =$Nil, R=%$Cons ¢, _), ...} ==
| head (QueugF =$Cons ¢, f),...}) ==
fun tail (Queue{F =$Nil, R = $Nil, ... }) = raise EMPTY
| tail (Queue{F =$Nil, R =$Cons ¢, _), ...} = empty
| tail (Queue{F =$Cons ¢, /), LenF =lenF,R =r, LenR =lenR}) =
queue{F =f, LenF =lenF'—1, R =r, LenR =lenR}

...shoc, last, and init defined symmetrically. . .
end

Figure 5.2: An implementation of deques based on lazy rebuilding and the bankdrsdnet
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Proof: Similar to the proof of Theorem 3.1 on page 27. O

By inspection, every operation has@(l ) unshared cost, and by Theorem 5.1, every oper-
ation discharges no more thai1) debits. Therefore, every operation rung’ifil) amortized
time.

5.4.3 Real-Time Deques

Real-time dequesupport every operation ifi( 1) worst-case time. We obtain real-time deques
from the deques of the previous section by scheduling both the front and rear streams.

As always, the first step in applying the scheduling technique is to convertalblthic
functions to incremental functions. In the previous implementation, the rebuilcangfor-
mation rebuilt7 and R astake (i, F)) and R + reverse (drop (i, F)) (or vice versa).take
and # are already incremental, buterse and drop are monolithic. We therefore rewrite
R # reverse (drop (i, F)) asrotateDrop (R, i, F') whererotate Drop performsc steps of the
drop for every step of the + and eventually callgate Rev, which in turn performs steps of
the reverse for every remaining step of the H#otate Drop can be implemented as

fun rotateDrop ¢, ¢, f) =
if i < cthenrotateRev (, drop (, f), $Nil)
else let val($Cons ¢, r')) = r in $Cons (, rotateDrop ¢, ¢ — ¢, drop (¢, f))) end

Initially, |f| = ¢|r| + 1 + k wherel < k& < ¢. Every call torotate Drop dropsc elements of
and processes one element-pexcept the last, which dropsnod ¢ elements of and leaves
r unchanged. Therefore, at the time of the first calldtute Rev, | f| = ¢|r|+1+k—(: mod c¢).
It will be convenient to insist thdtf| > ¢|r|, so we require that + & — (i mod ¢) > 0. This
is guaranteed only if is two or three, so these are the only values tifat we allow. Then we
can implementotate Rev as

fun rotateRev $Nil, f, a) = reversef + a
| rotateRev $Cons ¢, ), f, a) =
$Cons (, rotateRev (, drop (c, /), reverse (taked, [)) + a))

Note thatrotate Drop and rotate Rev make frequent calls t@drop and reverse, which were
exactly the functions we were trying to eliminate. However, nbwp andreverse are always
called with arguments of bounded size, and therefore execuiélinsteps.

Once we have converted the monolithic functions to incremental functions, thetepxs$ s
to schedule the execution of the suspensions and 2. We maintain a separate schedule for
each stream and execute a few suspensions per operation from each scheditle tfesreal-
time queues of Section 4.2, the goal is to ensure that both schedules are comphdtedyee
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before the next rotation. Assume that both streams have lengtimediately after a rotation.
How soon can the next rotation occur? It will occur soonest if all the insertions @rcone
end and all the deletions occur on the other end.isfthe number of insertions antlis the
number of deletions, then the next rotation will occur when

m—+1>clm—d)+1

Rewriting both sides yields
i+ed>m(e—1)+1

The next rotation will occur sooner far= 2 than fore = 3, so substituté for c.
14+ 2d >m+ 1

Therefore, executing one suspension per stream per insertion and two suspensgireape
per deletion is enough to guarantee that both schedules are completely evaldatedHse
next rotation.

The complete implementation appears in Figure 5.3.

5.5 Related Work

Global Rebuilding Overmars introduced global rebuilding in [Ove83]. It has since been
used in many situations, including real-time queues [HM81], real-time dd&loes32, GT86,
Sar86, CG93], catenable deques [BT95], and the order maintenance problem [DS87].

Deques Hood [H0o082] first modified the real-time queues of [HM81] to obtain real-time
deques based on global rebuilding. Several other researchers later duphtatedrk [GT86,
Sar86, CG93]. These implementations are all similar to techniques usedulas multihead
Turing machines [Sto70, FMR72, LS81]. Hoogerwoord [Ho092b] proposed amortized deques
based on batched rebuilding, but, as always with batched rebuilding, his inrgkgioa is not
efficient when used persistently. The real-time deques in Figure 5.3gpstaed in [Oka95c].

Coroutines and Lazy Evaluation Streams (and other lazy data structures) have frequently
been used to implement a form of coroutining between the producer of a stream ahthe c
sumer of a stream. Landin [Lan65] first pointed out this connection between straadn
coroutines. See [Hug89] for some compelling applications of this feature.
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functor RealTimeDequeval ¢ : int) : DEQUE = (* c=20rc=3 %)
struct
datatype oo Queue = QueuéF : o Stream, LenF : int, SFa Stream,
R : « Stream, LenR : int, SRa Strean}
(x Invariants: |[F| < ¢|R|+ 1, |R| < ¢|F| + 1, LenF= |F|, LenR= |R] %)

exceptionEMPTY

val empty = Queud F = $Nil, LenF = 0, SF =$Nil, R = $Nil, LenR = 0, SR =$Nil }
fun isEmpty (QueudLenF =lenF, LenR =lenR, ...}) = (lenF'+lenR = 0)

fun execl $Cons ¢, s)) = s
| execls = s
fun exec2s = execl (execk)

fun rotateRev §Nil, f, a) = reversef + a
| rotateRev $Cons ¢, r), f, a) =
$Cons (, rotateRev ¢, drop (c, f), reverse (takeq, f)) + «a))
fun rotateDrop ¢, i, f) =
if i < ¢ thenrotateRev ¢, drop @, ), $Nil)
else let val($Cons ¢, r’)) = r in $Cons , rotateDrop ¢/, i — ¢, drop (¢, f))) end

fun queue ¢ as{F =f, LenF =lenF, SF =sf, R=r, LenR =lenR, SR =sr}) =
if lent’ > cxlenR + 1then
let val ¢ = (lenF’ + lenR) div 2 valj =lenF +lenR — i
val /' = take ¢, f) val r’ = rotateDrop (, r, f)
in Queue{F =/’, LenF =i, SF=f',R=+/, LenR =j, SR =7’} end
else iflenR > exlent + 1then
let val ¢ = (lenF’ + lenR) div 2 valj =lenF +lenR — i
val f/ = rotateDrop {, f, r) val v’ =take @, r)
in Queue{F =f’, LenF =i, SF=f', R =/, LenR =j, SR =/} end
elseQueuey

fun cons (QueudF =f, LenF =lenF', SF =sf, R =r, LenR =lenR, SR =sr}, ) =
queue{F =$Cons ¢, ), LenF =lenF+1, SF = execkf,
R =r, LenR =lenR, SR = execlsr}
fun head (QueuéF = $Nil, R = $Nil, ... }) = raise EMPTY
| head (QueugF =$Nil, R=%$Cons ¢, _), ...} ==
| head (QueugF =$Cons ¢, f),...}) ==
fun tail (Queue{F =$Nil, R =$Nil, ... }) = raise EMPTY
| tail (Queue{F =$Nil, R =$Cons ¢, _), ...} = empty
| tail (Queue{F =$Cons ¢, f), LenF =lenF, SF =sf, R =r, LenR =lenR, SR =sr}) =
queue{F = f, LenF =lenF'—1, SF = exec2f, R =r, LenR =lenR, SR = execr}

...shoc, last, and init defined symmetrically. . .
end

Figure 5.3: Real-time deques via lazy rebuilding and scheduling.
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Chapter 6

Numerical Representations

Consider the usual representations of lists and natural numbers, along withl dgpécal
functions on each data type.

datatype « List = datatype Nat =
Nil Zero
| Consof o x « List | Succof Nat
fun tail (Cons ¢, xs)) = s fun pred (Suca) = n
fun append (Nilys) = ys fun plus (Zero,n) = n
| append (Consy, zs), ys) = | plus (Sucecm, n) =
Cons (, append £s, ys)) Succ (plus {2, n))

Other than the fact that lists contain elements and natural numbers do notjwioeiseple-
mentations are virtually identical. This suggests a strong analogy betwe@&seamtions of
the numbemn and representations of container objects of sizé~unctions on the container
strongly resemble arithmetic functions on the number. For example, insertingraerd re-
sembles incrementing a number, deleting an element resembles decrenaemtimdper, and
combining two containers resembles adding two numbers. This analogy can be exigoited
design new implementations of container abstractions — simply choose a reptiesesftaat-

ural numbers with certain desired properties and define the functions on the cootgjews
accordingly. Call an implementation designed in this fashioamerical representation

The typical representation of lists can be viewed as a numerical représeriiased on
unary numbers. However, numerical representations based on binary numbdeoarena-
mon; the best known of these is the binomial queues of Vuillemin [Vui78]. Incremeating
unary number take®(1) time, so inserting an element into a unary representation also usu-
ally takesO(1) time. However, adding two unary numbers tak&s:) time, so combining
two containers in a unary representation tak¢s ) time. Binary numbers improve the time
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required for addition (and hence the time required to combine two containevg)dgn ), but
also slow the time required to increment a number or insert an eleméntldég »). In this
chapter, we consider several variations of binary numbers that achieve thef besh worlds
by supporting the increment function (1) time and addition irO(log n) time. Numerical
representations based on these variations naturally support inserting anelaifi(1) time
and combining two containers f(log n) time.

Example abstractions for which numerical representations are particulseful include
random-access list@lso known adlexible array$ andheapgalso known agriority queues.

6.1 Positional Number Systems

A positional number systefKnu73] is a notation for writing a number as a sequence of digits
by...b,_1. The digitb, is called theleast significant digitand the digitb,,_, is called the
most significant digit Except when writing ordinary, decimal numbers, we will always write
sequences of digits from least significant to most significant.

Each digith; has weightv;, so the value of the sequenkg . . b,,_, is >."," baw;. For any
given positional number system, the sequence of weights is fixed, as is the setabgdigm
which eachb; is chosen. For unary numbers, = 1 andD; = {1} for all , and for binary
numbersw; = 2 andD; = {0,1}. (By convention, we write all digits in typewriter font
except for ordinary, decimal digits.) A number is said to be written in basew; = B and
D; ={0,..., B —1}. Usually, but not always, weights are increasing sequences of powers,
and the seb); is the same for every digit.

A number system is said to hedundantf there is more than one way to represent some
numbers. For example, we can obtain a redundant system of binary numbers byutakir
andD; = {0,1,2}. Then the decimal number 13 can be writfedil1, or 1201, or122. If
we allow trailing0s, then almost all positional number systems are redundant,gince,,, _,
is always equivalent te, ... b,,_,0. Therefore, we disallow trailings.

Computer representations of positional number systems caergeor sparse A dense
representation is simply a list (or some other kind of sequence) of digits, incltitisg digits
that happen to b@. A sparse representation, on the other hand, includes only non-zero digits.
It must then include information on either the rank (i.e., the index) or the weigldatf digit.
For example, Figure 6.1 shows two different representations of binary numbetaridagd
ML— one dense and one sparse — along with several representative function$ion eac
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structure Dense =
struct
datatype Digit = Zero | One
type Nat = Digit list (x increasing order of significance, no trailirgpros )
fun inc []=[One]
| inc (Zero ::ds) = One ::ds
| inc (One ::ds) = Zero ::incds  (x carry )
fun dec [One] =[]
| dec (One :ds) = Zero ::ds
| dec (Zero ::ds) = One :: deals (x borrow x)

fun add (s, []) = ds
| add ([],ds) = ds
| add (@ :: dsy, Zero ::dsy) = d :: add sy, dss)
| add (Zero :dsy, d :: dsy) = d > add (s, dss)
| add (One :dsy, One ::dsy) = Zero ::inc (add {sy, dsg))  (x carry x)
end

structure SparseByWeight =
struct
type Nat = int list (x increasing list of weights, each a power of tw)p

(x add a new weight to a list, recurse if weight is already présén
fun carry (w, []) =[w]
| carry (w, ws asw’ :: rest) = if w < w’ then w :: ws elsecarry (2w, rest)

(* borrow from a digit of weightv, recurse if weight is not preser}
fun borrow (w, ws asw’ :: rest) = if w = w’ then rest elsew :: borrow (2w, ws)

fun inc ws = carry (1,ws)
fun decws = borrow (1,ws)

fun add (s, []) = ws
| add ([], ws) = ws
| add (n aswy :: wsy, n aswsy i wsg) =
if w; < wy then wy > add @wsq, n)
else ifwy < wy then wy > add (n, wss)
elsecarry (Zw,, add sy, wss))
end

Figure 6.1: Two implementations of binary numbers.
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6.2 Binary Representations

Given a positional number system, we can implement a numerical represarttased on
that number system as a sequence of trees. The number and sizes of the treestregras
collection of sizen are governed by the representation:oi the positional number system.
For each weighto;, there are; trees of that size. For example, the binary representation of 73
i 1001001, so a collection of size 73 in a binary numerical representation would coenpris
three trees, of sizes 1, 8, and 64, respectively.

Trees in numerical representations typically exhibit a very regular streicEor example,
in binary numerical representations, all trees have sizes that are poiv@. Three com-
mon kinds of trees that exhibit this structure ammplete binary leaf tred&D96], binomial
trees[Vui78], andpennant§SS90].

Definition 6.1 (Complete binary leaf trees) A complete binary tree of rank O is a leaf and a
complete binary tree of rank > 0 is a node with two children, each of which is a complete
binary tree of rank — 1. A leaf tree is a tree that contains elements only at the leaves, unlike
ordinary trees that contain elements at every node. A complete binary taekofnas2 ! —1
nodes, but onlp" leaves. Hence, a complete binary leaf tree of rackntain2” elements.

Definition 6.2 (Binomial trees) A binomial tree of rank: is a node with- childrenc; . . .c¢,,
wherec; is a binomial tree of rank — 7. Alternatively, a binomial tree of rank > 0 is a
binomial tree of rank: — 1 to which another binomial tree of rank— 1 has been added as
the leftmost child. From the second definition, it is easy to see that a binaeéabt rankr
contain2” nodes.

Definition 6.3 (Pennants) A pennant of rank O is a single node and a pennant of rank0
is a node with a single child that is a complete binary tree of rankl. The complete binary
tree contain®” — 1 elements, so the pennant contathelements.

Figure 6.2 illustrates the three kinds of trees. Which kind of tree is superia tpven
data structure depends on the properties the data structure must maintain, swebraet in
which elements should be stored in the trees. A key factor in the suitadfilyarticular kind
of tree for a given data structure is how easily the tree supports functions anatograrsies
and borrows in binary arithmetic. When simulating a carry,|wk two trees of rank: to form
atree of rank + 1. Symmetrically, when simulating a borrow, walink a tree of rank: > 0
to obtain two trees of rank — 1. Figure 6.3 illustrates the link operation (denoteflon each
of the three kinds of trees. Assuming that elements are not rearranged, eaclhoéékinds
of trees can be linked or unlinked {n(1) time.

We next describe two existing data structures in terms of this frameworkniesided flex-
ible arrays of Kaldewaij and Dielissen [KD96], and the binomial queues ofaraith [Vui78,
Bro78].
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(@) (b) (€)

Figure 6.2: Three trees of rank 3: (a) a complete binary leaf tree, (b) a bintre®aland (c) a
pennant.
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Figure 6.3: Linking two trees of rankto obtain a tree of rank + 1 for (a) complete binary
leaf trees, (b) binomial trees, and (c) pennants.
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signature RANDOMACCES4.IST =
sig

type « RList

exceptionEMPTY and INDEX

valempty :« RList
val isEmpty : o RList — bool

val cons o X o RList— o RList

valhead o RList— « (x raisesEMPTY if listis empty *)
val tail : a RList — « RList (x raisesEmMPTY if listis empty )
val lookup :« RList x int— « (* raisesINDEX if out of boundsx)

val update o RList x int x @ — « RList (x raisesINDEX if out of boundsx)
end

Figure 6.4: Signature for random-access lists.

6.2.1 Binary Random-Access Lists

A random-access listalso called a one-sided flexible array, is a data structure that supports
array-likelookup andupdate functions, as well as the usualns, head, andtail functions on
lists. A signature for random-access lists is shown in Figure 6.4.

Kaldewalij and Dielissen [KD96] describe an implementation of randomsacksts in
terms of leftist left-perfect leaf trees. We can easily tratestheir implementation into the
framework of numerical representations as a binary representation usingeterbpiary leaf
trees. A binary random-access list of siz¢hus contains a complete binary leaf tree for each
1 in the binary representation of The rank of each tree corresponds to the rank of the corre-
sponding digit; if theth bit of » is 1, then the random-access list contains a tree ofXizEor
this example, we choose a dense representation, so the type of binary randomistsasss |

datatype « Tree = Leafof o | Nodeof int x o Treex « Tree
datatype « Digit = Zero | Oneof « Tree
type a RList = « Digit list

The integer in each node is the size of the tree. This number is redundant sinceetloé siz
every tree is completely determined by the size of its parent or by its positi the list of
digits, but we include it anyway for convenience. Trees are stored in isiagarder of size,
and the order of elements (both within and between trees) is left-to-righs, The head of the
random-access list is the leftmost leaf of the smallest tree. Figurgh®ws a binary random-
access list of size 7. Note that the maximum number of trees in a list oh s&Hog(n + 1) ]
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Figure 6.5: A binary random-access list containing the elententss.

and the maximum depth of any tree|isg n |.

Now, insertion into a binary random-access list (i®ns) is analogous to incrementing a
binary number. Recall the increment function on dense binary numbers:

funinc [] = [One]
| inc (Zero ::ds) = One ::ds
| inc (One ::ds) = Zero ::incds

To insert an element withons, we first convert the element into a leaf, and then insert the leaf
into the list of trees using a helper functioms Tree that follows the rules ofrc.

fun cons (, ts) = insTree (Leatf:, ts)

fun insTree (, []) =[One ]
| insTree (, Zero ::ts) = Onet :: ts
| insTree (;, Onet, :: ts) = Zero :: insTree (link §, &), ts)

Thelink helper function is a pseudo-constructor fasde that automatically calculates the size
of the new tree from the sizes of its children.

Deleting an element from a binary random-access list (usitty is analogous to decre-
menting a binary number. Recall the decrement function on dense binary numbers:

fun dec [One] =]
| dec (One :ds) = Zero ::ds
| dec (Zero ::ds) = One :: dedis

Essentially, this function resets the figsto 0, while setting all the precedin@s to1s. The
analogous operation on lists of tree$dsrow Tree. When applied to a list whose first digit has
rankr, borrow Tree returns a pair containing a tree of rankand the new list without that tree.

fun borrowTree [One] = (¢, [])
| borrowTree (One :: ts) = (¢, Zero ::is)
| borrowTree (Zero :1s) = let val (Node (, t, t2), ts’) = borrowTreets
in (t;, Onet, :: ts") end
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Thehead andtail functions “borrow” the leftmost leaf usingrrow Tree and then either return
that leaf’s element or discard the leaf, respectively.

fun headts = let val (Leaf », _) = borrowTreets in = end
fun tail ts = let val (_, ts’) = borrowTreets in ¢s" end

Thelookup andupdate functions do not have analogous arithmetic operations. Rather, they
take advantage of the organization of binary random-access lists as logariémgib-ists of
logarithmic-depth trees. Looking up an element is a two-stage process. Weehirsh the
list for the correct tree, and then search the tree for the correct ateri@e helper function
lookup Tree uses the size field in each node to determine whetheititheement is in the left
subtree or the right subtree.

fun lookup (Zero ::ts, i) = lookup (ts, i)
| lookup (Onet :: s, i) =
if i < sizet thenlookupTree (, 7) elselookup (ts, i — sizet)

fun lookupTree (Leaf:, 0) =z
| lookupTree (Node, {1, &), i) =
if i < w div2thenlookupTree (i, 7) elselookupTree (;, i — w div 2)

update works in same way but also reconstructs the path from the root to the update@eaf
reconstruction is calledath copyindST86a] and is necessary for persistence.

fun update (Zero :ts, i, y) = Zero :: updates, ¢, y)
| update (One :: ts, i, y) =
if ¢ < sizet then One (updateTree (i, y)) :: ts elseOnet :: update (s, i — sizet, y)
fun updateTree (Leat, O, y) = Leafy
| updateTree (Nodeu(, ¢, &), i, y) =
if ¢ < w div2then Node (v, updateTreet, i, y), t2)
elseNode (v, t;, updateTreetf, i — w div 2, y))

The complete code for this implementation is shown in Figure 6.6.

cons, head, andtail perform at mosO(1) work per digit and so run i (log n) worst-
case timelookup andupdate take at most(log n) time to find the right tree, and then at most
O(log n) time to find the right element in that tree, for a totak®flog ») worst-case time.

6.2.2 Binomial Heaps

Binomial queue$Vui78, Bro78] are a classical implementation of mergeable priority queues.
To avoid confusion with FIFO queues, we will henceforth refer to priority geexsheapsand
binomial queues asinomial heaps Heaps support four main functions: inserting an element
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structure BinaryRandomAccessList : ANDOMACCESY.IST =

struct
datatype o Tree = Leafof o | Nodeof int x o Treex o Tree ¢ intis size of tree)
datatype « Digit = Zero | Oneof « Tree
type « RList = « Digit list

exceptionEMPTY and INDEX

val empty =[]
fun isEmptyts = null s

fun size (Leafr) =1
| size (Node @, t1, t2)) = w
fun link (¢1, t;) = Node (sizel; +sizety, 11, t2)
fun insTree ¢, []) = [One t]
| insTree ¢, Zero ::ts) = Onet :: ts
| insTree ¢, Onet, :: ts) = Zero :: insTree (link {;, &), ts)
fun borrowTree [] =raise EMPTY
| borrowTree [One] = (¢, [])
| borrowTree (Oné :: ts) = (t, Zero ::ts)
| borrowTree (Zero :ts) = let val (Node (, #, t3), ts’) = borrowTreets
in (¢1, Onet, :: ts") end

fun cons ¢, ts) = insTree (Leaf:, ts)
fun headts = let val (Leaf z, _) = borrowTreets in = end
fun tail ¢s = let val (_, ts’) = borrowTreets in ¢s’ end

fun lookupTree (Leaf:, 0) =«
| lookupTree (Leaf:, i) = raise INDEX
| lookupTree (Nodew, t, t;), i) =
if ¢ < w div2thenlookupTree (i, ¢) elselookupTree (;, i — w div 2)
fun updateTree (Leat, O, y) = Leafy
| updateTree (Leaf, i, y) = raise INDEX
| updateTree (Nodeu(, t, t3), i, y) =
if ¢ < w div2then Node (v, updateTreet(, ¢, y), t2)
elseNode (@, t;, updateTreet}, i — w div 2, y))

fun lookup ([], /) = raise INDEX
| lookup (Zero ::ts, i) = lookup (s, 7)
| lookup (Onet :: ts, i) =
if ¢ < sizet thenlookupTree (, i) elselookup (s, i — sizet)
fun update ([],7, y) = raise INDEX
| update (Zero :ts, i, y) = Zero :: updatets, i, y)
| update (One :: ts, i, y) =
if ¢ < sizet then One (updateTree (i, y)) :: ts elseOnet :: update (s, i — sizet, y)

end

Figure 6.6: Binary random-access lists.
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signature ORDERED =

sig
type T (* type of ordered elements)
valleq: Tx T — bool (x total ordering relation «)
end

signature HEAP =
sig
structure Elem : ORDERED

type Heap

exceptionEMPTY

valempty  : Heap

val isEmpty : Heap— bool

val insert : Elem.Tx Heap— Heap
val merge : Heap< Heap— Heap

val findMin : Heap— Elem.T { raisesEMPTY if heap is empty)
val deleteMin : Heap—+ Heap & raisesEmMPTY if heap is empty)
end

Figure 6.7: Signature for heaps.

(insert), merging two heapsn{erge), finding the minimum elementiqdMin), and deleting
the minimum elementdeleteMin). A Standard ML signature for heaps appears Figure 6.7.

Remark: Heaps are similar to the sortable collections of Section 3.5.2, but use eediffe
mechanism for specifying the desired comparison function. For sortable collecthe com-
parison function is supplied when a new object is created, and every objectweaa Hdferent
comparison function. This approach is very flexible, but causes problems in thenpeesf
an function that combines two objects, suchmasge. If the two objects being merged have
different comparison functions, which should the resulting object keep? To avsidrttbigu-
ity, we fix the comparison function (and therefore the type of elements being ced)panen
the Standard ML structure implementing heaps is created. Then, we can bbatumayt two
objects being merged shared the same comparison function. &

In the framework of numerical representations, binomial heaps are a binagsegpation
with heap-ordered, binomial trees. A treehsap-orderedf the element at every node is
smaller than the elements at any of its children, with ties broken aribytra\s with binary
random-access lists, binomial heaps contain one tree forkacthe binary representation of
the size of the heap, and the trees have the same weights as their matching digits
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Assuming an @DERED structureLlem that specifies the element type and comparison
function, the types of binomial trees and binomial heaps can be written as follows:

datatype Tree = Nodeof int x Elem.T x Tree list
type Heap = Tree list

This time, we have chosen a sparse representation, where the integer abdadh the rank
of the tree. For reasons that will become clear later, we maintain thef liszses representing
a heap in increasing order of rank, but maintain the list of trees represehérghildren of a
node in decreasing order of rank.

Remark: The rank information on each node that is not a root is redundant sinc¢thtbleild
of a node of rank: always has rank — :. However, we maintain this information anyway
because doing so simplifies the code slightly. &

The fundamental operation on binomial tree&nig, which compares the roots of two trees
of rank » and makes the tree with the larger root a child of the tree with the smaltgy r
producing a tree of rank + 1.

fun link (¢, asNode (-, =y, ¢1), &z asNode (, 23, ¢;)) =
if Elem.leq (, 2;) then Node (+1, z1, &, :: ¢;) elseNode (+1, 23, t; :: ¢3)

Since the children of a tree are maintained in decreasing order of rank, addimevthehild to
the list takes only)(1) time.

Now, inserting an element into a binomial heap is similar to the increrierdtion on
sparse binary numbers. Whenever we find two trees of the same rankpvehem and
reinsert the linked tree into the list. This corresponds to a carry in binattynaetic. We
use theinsTree helper function to insert new trees into the list of treg@siert builds a new
singleton tree and callgs Tree.

fun insTree (, []) =[]
|insTree (;, ts ast, :: rest) =
if rankt; < rankt, thent, :: ts elseinsTree (link ¢, 3), rest)

fun insert (¢, ts) = insTree (Node (Oz, []), s)

merge IS similar to addition on sparse binary numbers, where agaihmietrees of equal
rank whenever there is a carry.

fun merge (s1, []) = ts1
| merge ([1,4s5) = ts,
| merge (; :: sy, ty 1 tsy) =
if rankt, < rankt, thent, :: merge (s, &, :: ts3)
else ifrankt, < ranki, thent, :: merge (; :: tsy, ts3)
elseinsTree (link ¢, #;), merge (s, ts3))
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Since every tree is heap-ordered, we know that the minimum element withgiaytree
is the root. However, we do not know which tree has the minimum roofy€d/in scans all
the roots in the heap.

fun findMin [¢] = root ¢
| findMin (¢ :: ts) =let val « = roott
val y = findMin ¢s
inif Elem.leq ¢, y) thenz elsey end

Finally, deleteMin begins by removing the tree with the minimum root. (In the case of ties, we
should take care to remove the tree with the same root as returngd/yin.) Once we have
discarded the root of this tree, we are left with two lists of trees: opeesenting the children

of the discarded tree, and one representing the remaining trees in the heapaifcaahhgle
heap, we simply merge these two lists, but since the lists are mainiaiopgosite orders, we
first reverse the list of children.

fun deleteMints =
let fun getMin [¢] = (¢, [])
| getMin (¢ :: ¢s) =
let val (¢, ts") = getMin s
in if Elem.leq (root, roott’) then (¢, ts) else(t’, t :: ts’) end
val (Node (, z, tsy), ts3) = getMin ts
in merge (revs, ts;) end

The complete implementation of binomial heaps appears in Figure 6.8. Since heaps conta
no more tharjlog(n + 1)] trees, and binomial trees have no more thiag » | children, each
of these functions take3(log n) worst-case time.

6.3 Segmented Binary Numbers

We next explore two variations of binary numbers that allow a number to be incrednente
decremented i) (1) worst-case time. Basing a numerical representation on these varjations
rather than ordinary binary numbers, reduces the running time of many insertion latidrde
functions fromO(log n) to O(1). First, we present a somewhat complicated representation and
sketch the design of random-access lists and heaps based on this represelmatiemext
section, we present a much simpler representation that is usually supgsractrce.

The problem with ordinary binary numbers is that carries and borrows can casEade
example, incrementingf — 1 causes: carries in binary arithmetic. Symmetrically, decrement-
ing 2* causes: borrows. Segmented binary numbesslve this problem by allowing multiple
carries or borrows to be executed in a single step.
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functor BinomialHeap §tructure E : ORDERED) : HEAP =
struct
structure Elem = E

datatype Tree = Nodeof int x Elem.T x Tree list ( the integer is the rank of the treg
type Heap = Tree list

exceptionEMPTY

val empty =[]
fun isEmptyts = null s

fun rank (Node ¢, z, ¢)) = r
fun root (Node ¢, z, ¢)) ==
fun link (¢, asNode (-, #1, c1), t2 asNode (, 23, ¢3)) =
if Elem.leq (1, «2) then Node (-+1, 2y, t; :: ¢1) elseNode (+1, vy, t; :: o)
fun insTree ¢, []) =[?]
| insTree {,, ts asty :: rest) =
if rank?; < rankt, then ¢, :: ¢s elseinsTree (link ¢, t2), rest)

fun insert (¢, ts) = insTree (Node (Oz, []), #s)
fun merge (s, []) = tsy
| merge ([11s2) = 1s
| merge ¢ :: tsy, ty i tsg) =
if rank?; < rankt, then ¢ :: merge {sy, t; :: ts3)
else ifrankt, < rankt thent; :: merge ¢ :: tsy, ts9)
elseinsTree (link ¢y, t;), merge sy, ts3))

fun findMin [] = raise EMPTY
| findMin [¢] = root ¢
| findMin (¢ :: ts) = letval = = roott
val y = findMin ts
inif Elem.leq ¢, y) thenx elsey end

fun deleteMin [] =raise EMPTY
| deleteMints =
let fun getMin [t] = (¢, [])
| getMin (¢ :: ts) =
letval (¢/, ts’) = getMin s
in if Elem.leq (roott, root¢’) then (¢, ¢s) else(t’, t :: ts’) end
val (Node (, =, ts1), ts2) = getMin ts
in merge (revts,, tss) end
end

Figure 6.8: Binomial heaps [Vui78, Bro78].
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Note that incrementing a binary number takesteps whenever the number begins with a
block of & 1s. Similarly, decrementing a binary number takesteps whenever the number be-
gins with a block of 0s. Segmented binary numbers group contiguous sequences of identical
digits into blocks so that we can execute a carry or borrow on an entire blockingke step.

We represent segmented binary numbers as alternating blo6lssasfdl s using the following
datatype:

datatype DigitBlock = Zerosof int | Onesof int
type Nat = DigitBlock list

where the integer in eachigitBlock represents the block’s length. Note that since we have
forbidden trailing0s, the last block (if any) always contaifs.

We use the pseudo-constructersos and ones to add new blocks to the front of a list of
blocks. These pseudo-constructors merge adjacent blocks of the same digit and aigagrd e
blocks. In addition, theeros pseudo-constructor discards any trailing bloclOef

fun zeros (, []) =[]
| zeros (, Zerosj :: blks) = Zeros (+j) :: blks
| zeros (0plks) = blks
| zeros (, blks) = Zerosi :: blks

fun ones (, Onesj :: blks) = Ones (+) :: blks
| ones (0plks) = blks
| ones (, blks) = Onesi :: blks

Now, to increment a segmented binary number, we inspect the first block of digitgyy.
If the first block containg 0s, then we replace the fir6twith a 1, creating a new singleton
block of 1s and shrinking the block dds by one. If the first block containsls, then we
perform: carries in a single step by changing th&to0s and incrementing the next digit.

funinc[] =[Ones 1]
| inc (Zerosi :: blks) = ones (1, zerosi¢1, blks))
| inc (Ones:i :: blks) = Zerosi :: inc blks

In the third line, we know the recursive call foc cannot loop because the next block, if any,
must contairDs. In the second line, the pseudo-constructors deal gracefully with the special
cases that occur when the leading block contains a sthgle

Decrementing a segmented binary number is almost exactly the same, bthewittes of
Os andls reversed.

fun dec (Ones :: blks) = zeros (1, onesi(1, biks))
| dec (Zeros :: blks) = Onesi :: decblks



6.3 Segmented Binary Numbers 75

6.3.1 Segmented Binomial Random-Access Lists and Heaps

In both the binary random-access lists of Section 6.2.1 and the binomial heapsioh$ez. 2,
we linked two trees into a new, larger tree for every carry. In a cdsoék carries, we linked

a new singleton tree with existing trees of size!, ..., 2*~! to obtain a new tree of siz#.
Similarly, in binary random-access lists, a cascade of borrows decomptsesof size* into
a singleton tree and trees of sizeg’, 2!, ... 251,

Segmented binary numbers support fast carries and borrows, but to take advaritégyof
a numerical representation, we must choose a tree representation thdfowillia to link and
unlink many trees in a single step. Of the three kinds of trees describedreanlly binomial
trees support this behavior. A node of rankonsists of an element and a sequence of trees of
ranks0, ...,r — 1. Therefore, we can combine an element and a sequence of trees into a new
tree — or decompose a tree into an element and a sequence of treeSH ithme.

Adapting the earlier implementations of binary random-access lists and binbeaps
to use segmented binary arithmetic rather than ordinary binary arithnaeiicin the case of
binary random-access lists, to use binomial trees rather than complety leaatrees, is
tedious, but mostly straightforward, except for the following issues:

¢ To link and unlink multiple trees in a single step, we must use the same rafatsa
for the sequence of trees corresponding to a blocksofcalled asegmentand for the
children of a node. So, for example, we cannot maintain one in increasing order of
rank and the other in decreasing order of rank as we did for binomial heaps. For both
segmented binomial heaps and segmented binomial random-access lists, wasyeed e
access to the smallest tree in a segment, but we also need easy/tadbedargest child
of a node. Therefore, we represent both kinds of sequences as real-time deques.

e For binomial heaps, the cascade of links that produces a new tree also compares the
roots of trees as it goes to find the minimum element in the tree. For segmendeal &l
heaps, we do not have time to search a segment for the root with the minimurmmgleme
SO we insist that the smallest tree in any segment always have the mimootnThen,
whenever we create a new tree from a new element and a segment of trees of ranks
0,...,r — 1, we simply compare the new element with the first root in the segment (i.e.,
the root of the rank O tree). The smaller element becomes the new root and thre large
element becomes the rank O child of the root. Whenever we add a new tree oft@nk
a segment whose smallest tree has rankl, we decompose the tree of rank- 1 into
two trees of rank:. We then keep the tree with the smallest root, and link the remaining
two trees into a new tree of ramk+ 1.

With these changes segmented binomial random-access lists supparticad, andtail in
O(1) worst-case time, antbokup and update in O(log n) worst-case time. Segmented bino-
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mial heaps supporinsert in O(1) worst-case time, anderge, findMin, and deleteMin in
O(log n) worst-case time.

6.4 Skew Binary Numbers

Numerical representations based on segmented binary numbers rather thanydodinay
numbers improve the asymptotic behavior of certain operations @iy ) to O(1), while
retaining the same asymptotic behavior for all other operations. Unfortunatefygater struc-
tures are too complicated to be useful in practice. We next consider another nsysten,
skew binary numbershat usually achieves similar asymptotic benefits, but that is simpler and
faster in practice.

In skew binary numbers [Mye83, Oka95b], the weighiof the:th digitis2'*! — 1, rather
than?2’ as in ordinary binary numbers. Digits may Bel, or 2 (i.e., D; = {0,1,2}). For
example, the decimal number 92 could be writd€2101 (least-significant digit first).

This number system is redundant, but, if we add the further constraint that only thstlow
non-0 digit may be2, then we regain unique representations. Such a number is said to be in
canonical form Henceforth, we will assume that all skew binary numbers are in canonical
form.

Theorem 6.1 (Myers [Mye83]) Every natural number has a unique skew binary canonical
form.

Recall that the weight of digitis 2'+! — 1 and note that + 2(2F! — 1) = 2:+2 — 1. This
implies that we can increment a skew binary number whose lowesDrbgi is 2 by resetting
the2 to 0 and incrementing the next digit frotto 1 or from 1 to 2. (The next digit cannot
already be2.) Incrementing a skew binary number that does not cont&insaeven easier —
simply increment the lowest digit fro@to 1 or from1 to 2. In both cases, the result is still
in canonical form. And, assuming we can find the lowest Aatigit in O(1) time, both cases
take onlyO(1) time!

We cannot use a dense representation for skew binary numbers since scanning foeste low
non-0 digit would take more tha®w(1) time. Instead, we choose a sparse representation, so
that we always have immediate access to the lowesOnaigit.

type Nat = int list

The integers represent either the rank or weight of eachthdigit. For now, we use weights.
The weights are stored in increasing order, except that the smallest tigbte/enay be identi-
cal, indicating that the lowest ndhdigit is 2. Given this representation, we implement as
follows:
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fun inc (ws asw; 3> wy :: rest) =
if w; = wy then (1+w,+w;) :: rest elsel :: ws
lincws=1:ws

The first clause checks whether the first two weights are equal and then ethbmes the
weights into the next larger weight (incrementing the next digit) or adds a new weight of 1
(incrementing the smallest digit). The second clause handles the casestiaempty or
contains only a single weight. Clearly,c runs in onlyO(1) worst-case time.

Decrementing a skew binary number is just as easy as incrementing a numbetolfest
digit is non9, then we simply decrement that digit fra2nto 1 or from 1 to 0. Otherwise, we
decrement the lowest ndhdigit and reset the previoudsto 2. This can be implemented as
follows:

fun dec (1 :1ws) = ws
| dec (w :: ws) = (w div 2) :: (w div 2) :: ws

In the second line, note thatif = 2¥*! — 1, then|w/2| = 2% — 1. Clearly,dec also runs in
only O(1) worst-case time.

6.4.1 Skew Binary Random-Access Lists

We next design a numerical representation for random-access lists, badeshdrirsary num-
bers. The basic representation is a list of trees, with one tree forlediit and two trees for
each? digit. The trees are maintained in increasing order of size, except thatdléest two
trees are the same size when the lowest dalgit is 2.

The sizes of the trees should correspond to the weights in skew binary numberseso a t
representing théth digit should have siz&'*! — 1. Up until now, we have mainly considered
trees whose sizes are powers of two, but we have also encountered a kindwhbdse sizes
have the desired form: complete binary trees. Therefore, we represenbgkamwy random-
access lists as lists of complete binary trees.

To supporthead efficiently, the first element in the random-access list should be the root
of the first tree, so we store the elements within each tree in lefgtapreorder and with the
elements in each tree preceding the elements in the next tree.

In previous examples, we have stored a size or rank in every node, even wherfdhat
mation was redundant. For this example, we adopt the more realistic approachmtdimag
size information only for the root of each tree in the list, and not for every ealss well. The
type of skew binary random-access lists is therefore

datatype « Tree = Leafof o | Nodeof o x o Tree x o Tree
type o RList = (int x « Tree) list
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Now, we can defineons in analogy toinc.

fun cons (¢, ts as(wy, 1) 2 (wy, t) :: rest) =
if w; = w, then (1+w;+w,, Node @, 1, 13)) :: rest) else(l, Leafz) :: ts
| cons (¢, ts) = (1, Leafz) :: ts

head andtail inspect and remove the root of the first treeil returns the children of the root
(if any) back to the front of the list, where they represent a Bedigit.

fun head ((1, Leak) :: ts) = =
| head ((v, Node @, 4, t3)) i1 ts) =z
fun tail ((1, Leafz) :: ts) = ts
| tail ((w, Node @, t;, t2)) 2 ts) = (w div 2, ;) 2 (w div 2, 1) 2 ts

To lookup an element, we first search the list for the right tree, and thechstie tree for the
right element.

fun lookup ((w, t) :: ts, i) =if i < w thenlookupTree (v, t, i) elselookup (s, i—w)

fun lookupTree (1, Leak, 0) =«
| lookupTree (v, Node @, ¢, t3), 0) =z
| lookupTree (v, Node @, t1, t2), i) =
if ¢ < w div2thenlookupTree (v div 2, ¢, i—1)
elselookupTree (v div 2, t,,i — 1 — w div 2)

Note that in the penultimate line, we subtract one frobecause we have skipped owerin

the last line, we subtradtt | w/2]| from i because we have skipped oveaind all the elements

in t;. update andupdate Tree are defined similarly, and are shown in Figure 6.9, which contains
the complete implementation.

It is easy to verify thatcons, head, andtail run in O(1) worst-case time. Like binary
random-access lists, skew binary random-access lists are logarithngti:lists of logarithmic-
depth trees. Hencéokup andupdate run in O(log n) worst-case time. In fact, every unsuc-
cessful step ofookup or update discards at least one element, so this bound can be improved
slightly to O(min(7, logn)).

Hintto Practitioners: Skew binary random-access lists are a good choice for applicatiorgs that
take advantage of both the list-like aspects and the array-like aspects of raudess list
Although there are better implementations of lists, and better implemensatif (persisten
arrays, none are better at both [Oka95b].
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structure SkewBinaryRandomAccessList ARDOMACCES4.IST =
struct
datatype o Tree = Leafof o | Nodeof o x o Treex « Tree
type o RList = (int x « Tree) list ( integer is the weight of the treg

exceptionEMPTY and INDEX

val empty =[]
fun isEmptyts = null s

fun cons ¢, ts as(wy, &) :: (we, &) 2 ts) =
if w; = wy then (1+wy+wsy, Node @, t1, 1)) :: ts') else(1, Leafz) :: s
| cons ¢, ts) = (1, Leafz) :: ts
fun head [] =raise EMPTY
| head ((1, Leaf) :: ts) =
| head (v, Node @, t;, t3)) :i ts) =z
fun tail [] = raise EMPTY
| tail (1, Leafz) :: ts) = ts
| tail ((w, Node @, t;, t3)) ;1 ts) = (w div2, 1) 2 (w div 2, 8;) = ts

fun lookupTree (1, Leaf, 0) =«
| lookupTree (1, Leat, i) = raise INDEX
| lookupTree (v, Node ¢, 11, t3), 0) =«
| lookupTree v, Node ¢, 1, t2), i) =
if ¢ < w div2thenlookupTree (v div 2, ¢;, i—1)
elselookupTree (v div 2,15, i — 1 — w div 2)
fun updateTree (1, Leaf, O, y) = Leafy
| updateTree (1, Leaf, i, y) = raise INDEX
| updateTreed), Node @, ¢, t2), 0, y) = Node (, #, t2)
| updateTreed, Node @, 11, t2), i, y) =
if i < w div2then Node ¢, updateTree div 2, t1, i—1, y), t2)
elseNode (, #;, updateTreey div 2, #, i — 1 — w div 2, y))

fun lookup ([], i) = raise INDEX
| lookup ((w, t) :: ts, i) =if i < w thenlookupTree (v, t, i) elselookup (ts, i—w)
fun update ([],7, y) = raise INDEX
| update (v, t) :: s, i, y) =
if ¢ < w thenupdateTree, ¢, i, y) :: ts else(w, t) :: update (s, i—w, y)
end

Figure 6.9: Skew binary random-access lists.
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6.4.2 Skew Binomial Heaps

Finally, we consider a hybrid numerical representation for heaps based on bottbsleaw
numbers and ordinary binary numbers. Incrementing a skew binary number is both quick and
simple, and serves admirably as a template forithert function. Unfortunately, addition

of two arbitrary skew binary numbers is awkward. We therefore basenthee function on
ordinary binary addition, rather than skew binary addition.

A skew binomial treés a binomial tree in which every node is augmented with a list of up
to  elements, where is the rank of the node in question.

datatype Tree = Nodeof int x Elem.T x Elem.T list x Tree list

Unlike ordinary binomial trees, the size of a skew binomial tree is not compldetgrmined
by its rank; rather the rank of a skew binomial tree determines a range of posgise si

Lemma 6.2 If ¢ is a skew binomial tree of rank then2” < |¢| < 2t — 1.

Proof: By induction. ¢ hasr childrent, ...t,, wheret; is a skew binomial tree of rank
r—1,and2" " < [;| < 2771 — 1. In addition, the root of is augmented with a list of
elements, wheré < k& < r. Therefore[t| > 1 + 0+ >/5;2' =1+ (2" - 1) = 2" and
) <T4r+ Xl @ =) =14 r+ (2 —r—2) =27+ 1, 0

Note that a tree of rankis always larger than a tree of rank- 1.

Skew binomial trees may danked or skew linked The /ink function combines two trees
of rankr to form a tree of rank + 1 by making the tree with the larger root a child of the tree
with the smaller root.

fun link (¢, asNode (-, =1, zsy, ¢1), i asNode (, 2, 252, ¢3)) =
if Elem.leq ¢, »;) then Node (+1, z;, s, {3 :: ¢;) elseNode (+1, 23, xso, 11 :: ¢3)

The skewLink function combines two trees of ramlwith an additional element to form a tree
of rankr + 1 by first linking the two trees, and then comparing the root of the resulting tree
with the additional element. The smaller of the two elements remains asdaty@nd the larger

is added to the auxiliary list of elements.

fun skewLink (z, ¢, t;) =
let val Node (-, v, ys, ¢) = link (¢, t,)
inif Elem.leq ¢, y) thenNode (-, =, y :: ys, ¢) elseNode ¢, y, « :: ys, ¢) end

A skew binomial heap is represented as a list of heap-ordered skew binomsbfree
creasing rank, except that the first two trees may share the same rank.ske&nc®inomial
trees of the same rank may have different sizes, there is no longer a direesgondence
between the trees in the heap and the digits in the skew binary number repreteasimg of
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the heap. For example, even though the skew binary representation bf 4askew binomial
heap of size 4 may contain one rank 2 tree of size 4; two rank 1 trees, eazk @ a rank 1
tree of size 3 and a rank O tree; or a rank 1 tree of size 2 and two rank< tremvever, the
maximum number of trees in a heap is stilflog n).

The big advantage of skew binomial heaps is that we can insert a new elemknj time.
We first compare the ranks of the two smallest trees. If they are the seenskew link the
new element with these two trees. Otherwise, we simply add a new singtek to the list.

fun insert (v, ts ast; :: ty > rest) =
if rankt, = rankt, then skewLink (¢, ¢, t;) :: rest elseNode (0,z, [], []) :: ts
| insert @z, ts) = Node (0,z, [1,[]) :: ts

We implementnerge in terms of two helper functiongps Tree andmerge Trees, that behave
exactly like their counterparts from ordinary binomial heaps, performing a regjukafnot

a skew link!) whenever they find two trees of equal rank. Simeege Trees expects lists of
strictly increasing rankinerge normalizes its two arguments to remove any leading duplicates
before callingmerge Trees.

fun normalize [] =[]
| normalize ( :: ts) = insTree (, ts)
fun merge (s1, ts;) = mergeTrees (normalize,, normalizets,)

findMin also behaves exactly like its counterpart from ordinary binomial heaps; sigo®ies
the rank of each tree, it is unaffected by the possibility that the first teg@stmight have the
same rank. It simply scans the list of trees for the minimum root.

fun findMin [¢] = root ¢
| findMin (¢ :: ts) =let val « = root¢
val y = findMin ¢s
inif Elem.leq ¢, y) thenz elsey end

Finally, deleteMin on skew binomial heaps is similar to its counterpart for ordinary binomial
heaps except that it must deal with the list of auxiliary elements that hasdulekeal to every
node. We first find and remove the tree with the minimum root. After discardtisgdoot, we
merge the children of this root with the remaining trees. To do so, we mustdirstse the list

of children, since it is stored in decreasing order, and normalize the listes tsince the first
rank might be duplicated. Finally, we reinsert each of the elements from thikeayikist.

fun deleteMints =
let fun getMin [¢] = (¢, [])
| getMin (¢ :: ts) =letval (¢, ts") = getMin ¢s
in if Elem.leq (roott, roott’) then (¢, ts) else(t', t :: ts’) end
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val (Node (, z, zs, ¢), ts’) = getMin ts
fun insertAll ([], ¢s) = ts
| insertAll (z :: xs, ts) = insertAll (zs, insert @, ts))
in insertAll (xs, mergeTrees (rev, normalizets’)) end

Figure 6.10 presents the complete implementation of skew binomial heaps.

insert clearly runs inO(1) worst-case time, whilenerge, findMin, and delete Min run
in the same time as their counterparts for ordinary binomial queuespi.kg n) worst-case
time each. Note that the various phasesi/@tieMin — finding the tree with the minimum
root, reversing the children, merging the children with the remaining teebreinserting the
auxiliary elements — take(log n) time each.

6.5 Discussion

In designing numerical representations, we draw analogies between contasstrdatures
and representations of natural numbers. However, this analogy can also be éxtentieer
kinds of numbers. For exampldifference list§SS86] in Prolog support a notion of lists with
negative length; appending a list of length 15 and a list of lengdt results in a list of length
5. This behavior is also possible using the catenable lists of Hughes [Hug86], whittteare
functional counterpart of difference lists.

As another example, Brodal and Okasaki [BO96] supp@kt/ae function on heaps using
two primitive heaps, one containing positive elements and one containing nedativengs.
The negative elements are ones that have been deleted, but that have not yet beatlyphysi
removed from the positive heap. In this representation, it is possible teeddkments that
have not yet been inserted. If the negative heap is larger than the positivetterathe overall
“size” of the heap is negative.

Can this analogy between data structures and representations of numbers be estended
further, to non-integral numbers? We know of no such examples, but itis intriguipgtokate
on possible uses for such data structures. For instance, might a numericatnégties based
on floating point numbers be useful in approximation algorithms?

6.6 Related Work

Numerical Representations Data structures that can be cast as numerical representations
are surprisingly common, but only rarely is the connection to a variant numbensysited
explicitly [GMPR77, Mye83, CMP88, KT96b].

IThanks to Phil Wadler for this observation.



6.6 Related Work

83

functor SkewBinomialHeapdtructure E : ORDERED) : HEAP =
struct
structure Elem =E

datatype Tree = Nodeof int x Elem.T x Elem.T listx Tree list
type Heap = Tree list
exceptionEMPTY
val empty =[]
fun isEmptyts = null s
fun rank (Node ¢, =, zs, ¢)) = r
fun root (Node ¢, =, xs, ¢)) =z
fun link (¢, asNode ¢, #1, ©s1, ¢1), t2 asNode (, »3, ¥s3, ¢3)) =
if Elem.leq (1, x2) then Node (-+1, 21, xsy, t2 :: ¢q) elseNode (+1, xo, zs9, 11 :: ¢3)
fun skewLink (¢, 1, ) =
let val Node (-, y, ys, ¢) = link (¢, t2)
inif Elem.leq ¢, y) then Node (-, z, y :: ys, ¢) elseNode ¢, y, = :: ys, ¢) end
fun insTree ¢, []) =[?]
|insTree {, t; :: ts) = if rank¢; < rankt; then ¢, :: &5 = ts elseinsTree (link ¢y, %2), ts)
fun mergeTreesté,, []) = sy
| mergeTrees ([J¢s2) = tso
| mergeTreest( :: tsy, 1y i tso) =if rankt; < rankt, then ¢, :: mergeTreesté, t; :: ts3)

elseinsTree (link ¢, t2), mergeTreesté,, ts;))
fun normalize [] =[]
| normalize ¢ :: ts) = insTree (, ts)
fun insert (¢, ts asty :: s :: rest) =
if rank?; = rankt, then skewLink (z, 1, t;) :: rest elseNode (0,z, [], [1) :: ts
| insert @, ts) = Node (0,z, [], []) :: ts
fun merge (s, tss) = mergeTrees (normalizz,, normalizetss)
fun findMin [] = raise EMPTY
| findMin [¢] = root ¢
| findMin (¢ :: ts) = letval z = roott and y = findMin ts
inif Elem.leq ¢, y) thenz elsey end
fun deleteMin [] =raise EMPTY
| deleteMints =
let fun getMin [t] = (¢, [])
| getMin (¢ :: ts) =letval (¢', ts") = getMin ¢s
in if Elem.leq (root, root¢’) then (¢, ¢s) else(t’, t :: ¢s’) end
val (Node (, z, zs, ¢), ts') = getMin s
fun insertAll ([, ts) = ts
| insertAll (z :: xs, ts) = insertAll (zs, insert ¢, ts))
in insertAll (zs, mergeTrees (rew, normalizets’)) end

end

else ifrankt; < rankt, then ¢, :: mergeTreest( :: tsy,ts2)

Figure 6.10: Skew binomial heaps.
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Random-Access Lists Random-access lists are usually implemented in purely functional
languages as balanced trees, such as AVL trees [Mye84], Braun trees [H8@224,], or
leftist left-perfect leaf trees [KD96]. Such trees easily supgditbg ») lookups and updates
(O(log ) in the case of Braun trees), but requi’élog n) time for cons or tail.

Myers [Mye83] describes the first implementation of random-access listsl lnesekew
binary numbers. He augments a standard singly-linked list with auxiliary poiatiexsing
one to skip arbitrarily far ahead in the list. The number of elements skippeddiyaxiliary
pointer is controlled by the digits of a skew binary number. His scheme suppershcad,
andtail in O(1) time, andlookup in O(log n) time, but requireg)(:) time for update. The
difficulty with updates is that his scheme contains many redundant pointers. Renbuse
redundant pointers yields a structure isomorphic to the skew binary random-actess lis
Section 6.4.1, which first appeared in [Oka95b].

Kaplan and Tarjan [KT95] recently introduced the algorithmic notion of recersiow-
down, and used it to design a new, purely functional implementation of realdegaees. A
pleasant accidental property of their data structure is that it also suppodsmaaccess in
O(log d) worst-case time, wherg is the distance from the desired element to the nearest end
of the deque (i.e.l = min(i,n — 1 — ¢)). We will consider a simplification of their data
structure in Chapter 8.

Finger search trees [GMPR77, Tsa85] support not only random accégsoind) worst-
case time, but also insertions and deletions at arbitrary locations. iKapthTarjan apply their
methods to purely functional finger search trees in [KT96b].

Binomial Heaps Binomial heaps were introduced by Vuillemin [Vui78] and extensively
studied by Brown [Bro78]. King [Kin94] showed that binomial heaps could be impitede
elegantly in a purely functional language (in his case, Haskell).

Fagerberg [Fag96] describes a generalization of binomial heaps in which the sét
allowable digits at positiom in a sequence of digits can be different for each/arying the
choices for eachD; allows a tradeoff between the costsiatert and meld, and the cost of
deleteMin.

Skew binomial heaps were originally presented, in a slightly different forfB@06].



Chapter 7

Data-Structural Bootstrapping

The termbootstrappingrefers to “pulling yourself up by your bootstraps”. This seemingly
nonsensical image is representative of a common situation in computer scigot@ems
whose solutions require solutions to (simpler) instances of the same problem.

For example, consider loading an operating system from disk or tape onto a bare computer
Without an operating system, the computer cannot even read from the disk or tapsblOne
tion is abootstrap loadera very tiny, incomplete operating system whose only purpose is to
read in and pass control to a somewhat larger, more capable operating systentuirareads
in and passes control to the actual, desired operating system. This can bd aewa instance
of bootstrapping a complete solution from an incomplete solution.

Another example is bootstrapping a compiler. A common activity is to write thgpdem
for a new language in the language itself. But then how do you compile that compiler? One
solution is to write a very simple, inefficient interpreter for the languageme other, existing
language. Then, using the interpreter, you can execute the compiler on itsedhytidtain-
ing an efficient, compiled executable for the compiler. This can be vieweuh asstance of
bootstrapping an efficient solution from an inefficient solution.

In his thesis [Buc93], Adam Buchsbaum describes two algorithmic design techrigues
collectively callsdata-structural bootstrappingThe first techniquestructural decompositign
involves bootstrapping complete data structures from incomplete data stsiclure second
technique structural abstractioninvolves bootstrapping efficient data structures from ineffi-
cient data structures. In this chapter, we reexamine data-structuraliapgisyy, and describe
several functional data structures based on these techniques.
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7.1 Structural Decomposition

Structural decompositiors a technique for bootstrapping complete data structures from in-
complete data structures. Typically, this involves taking an implement#éhat can handle
objects only up to some bounded size (perhaps even zero), and extending it to hand&e object
of unbounded size.

Consider typical recursive datatypes such as lists and binary leaf trees:

datatype « List = Nil | Consof o x « List
datatype « Tree = Leafof o | Nodeof o Tree x o Tree

In some ways, these can be regarded as instances of structural decompositiocomisist
of a simple implementation of objects of some bounded size (zero for lists and oinedsy
and a rule for recursively decomposing larger objects into smaller object®uatitually each
object is small enough to be handled by the bounded case.

However, both of these definitions are particularly simple in that the reeucemponent
in each definition is identical to the type being defined. For instance, the nezgmsnponent
in the definition ofa List is alsoa List. Such a datatype is calleshiformly recursive

In general, we reserve the testructural decompositioto describe recursive data struc-
tures that ar@on-uniform For example, consider the following definition of sequences:

datatype o Seq = Empty Seqof o x (a x a) Seq

Here, a sequence is either empty or a single element together with a sequenae off pa
elements. The recursive componeatX «) Seq is different froma Seq so this datatype is
non-uniform. (In Chapter 8, we will consider an implementation of queues that iRsim
this definition of sequences.)

Why might such a non-uniform definition be preferable to a uniform definition? The more
sophisticated structure of non-uniform types often supports more efficient algotithmgheir
uniform cousins. For example, compare the followsag: functions on lists and sequences.

fun sizeL Nil=0 fun sizeS Empty =0
| sizeL (Cons ¢, xs)) = 1 + sizeLas | sizeS (Seqd, ps)) = 1 + 2 sizeSps

The function on lists runs i (rn) time whereas the function on sequences run®itog n)
time.

7.1.1 Non-Uniform Recursion and Standard ML

Although Standard ML allows the definition of non-uniform recursive datatypes, thespygpe
tem disallows the definition of most useful functions on such datatypes. For instamseder



7.1 Structural Decomposition 87

the sizeS function on sequences. This function definition would be rejected by Standard ML
because the type system requires that all recursive calls in the body of avedunstion have

the same type as the enclosing function (i.e., recursive function definitionso@ustiform).

The sizeS function violates this restriction because the enclosingS has typey Seq — int

but the innerizeS has type & x «) Seq — int.

It is usually possible to convert a non-uniform type into a uniform type by introducing a
new datatype to collapse the different instances into a single type. For exampla|dpsing
elements and pairs, tht&q type could be written

datatype o ElemOrPair = Elenof « | Pairof o« ElemOrPairx « ElemOrPair
datatype o Seq = Emptyl Seqof o« ElemOrPairx « Seq

Then thesizeS function would be perfectly legal as written; both the enclosiingS and the
innersizeS would have typer Seq — int.

Although necessary to satisfy the Standard ML type system, this solution issfiasiry
in at least two ways. First, the programmer must manually inSert: and Pair constructors
everywhere. This is tedious and error-prone. Second, and more importantly, thisiciefof
Seq is not isomorphic to the earlier, non-uniform definition%4;. In particular, the first defi-
nition ensures that the outermaé&l; constructor contains a single element, the second a pair of
elements, the third a pair of pairs of elements, and so on. However, the sefamtion makes
no such restriction; elements and pairs may be freely mixed. If suchtrecties is desired,
the programmer must establish it as a system invariant. But if the prograacoeentally
violates this invariant — say, by using an element where a pair is expectix type system
will be of no help in catching the error.

For these reasons, we will often present code as if Standard ML supported non-uniform
recursive function definitions, also known aglymorphic recursioiMyc84]. This code will
not be executable but will be easier to read. We will then sketch the coememessary to
eliminate the polymorphic recursion and make the code executable.

7.1.2 Queues Revisited

Consider the use of + in the banker’'s queues of Section 3.4.2. During a rotation, the front
stream/’ is replaced by’ #+ reverse R. After a series of rotationd; will have the form

(- ((f 4 reverse r1) + reverse ry) - - - 4 reverse ry)

Append is well-known to be inefficient in left-associative contexts like b@cause it repeat-
edly processes the elements of the leftmost streams. For example, iaghjdlte elements of

f will be processed times (once by each +), and the elements; a¥ill be processed —: + 1
times (once byreverse and once for each following +). In general, left-associative appends



88 Data-Structural Bootstrapping

can easily lead to quadratic behavior. In this case, fortunately, thectmgtibf the appends is
still linear because each is at least twice as long as the one before. Still, this repeated pro-
cessing does sometimes make these queues slow in practice. In this sgetisg structural
decomposition to eliminate this inefficiency.

Given that/' has the above form and writing asr, we can decompose a queue into three

parts: f, r, and the collectiomn = {reverse r,..., reverse ry}. Previouslyf, r, and each
reverse r; Was a stream, but now we can repregeandr as ordinary lists and eaclaverse r;
as a suspended list. This eliminates the vast majority of suspensions andauwds all of
the overheads associated with lazy evaluation. But how should we reprieseatiection.?
As we will see, this collection is accessed in FIFO order, so usingtstral decomposition
we can represent it as a queue of suspended lists. As with any recursivevéypeed a base
case, so we will represent empty queues with a special constfuthar.new representation is
therefore

datatype o Queue =
Empty
| Queueof {F : « list, M : « list susp Queue, LenFM : int, Ra list, LenR : int}

LenkF'M is the combined length of" and all the suspended lists i (i.e., what used to be
simply LenF' in the old representation)2 can never be longer than this combined length. In
addition, /' must always be non-empty. (In the old representatiorcould be empty if the
entire queue was empty, but now we represent that case separately.)

As always, the queue functions are simple to describe.

fun snoc (Empty;) = Queue{F = [z], M = Empty, LenFM =1, R =[], LenR =§
| snoc (QueudF =/, M =m, LenFM =lenF'M, R =r, LenR =lenR}, z) =
queue{F=f, M =m, LenFM =lenFM,R =z :: r, LenR =lenR+1}
fun head (Queu¢F ==z :: f,...}) ==
fun tail (Queue{F =z :: f{, M =m, LenFM =lenFM,R =r, LenR =lenR}) =
queue{F =f, M =m, LenFM =lenFM -1, R =r, LenR =lenR }

The real action is in the pseudo-construgtocue. If R is too long,queue creates a suspension
to reversel? and adds the suspensionib. After checking the length of, queue invokes a
helper functioncheckF that guarantees that is non-empty. If both¥” and M are empty, then
the entire queue is empty. OtherwiseFifis empty we remove the first suspension fram
force it, and install the resulting list as the néw

fun queue g as{F =/, M=m, LenFM =lenFM,R =r, LenR =lenR}) =
if lenR < lenF'M then checkFg
elsecheckF{F = f, M = snoc (n, $rev r), LenFM =lenFM+lenR, R =[], LenR =@

LA slightly more efficient alternative is to represent queupso some fixed size simply as lists.
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structure BootstrappedQueue : (FUE =  (x assumes polymorphic recursion)
struct
datatype o Queue =
Empty
| Queueof {F : « list, M : « list susp Queue, LenFM : int, Ru list, LenR : int}

exceptionEMPTY

val empty = Empty
fun isEmpty Empty
| iSEmpty (Queue.) = false

fun queue ¢ as{F =f, M = m, LenFM =lenF'M, R =r, LenR =lenR}) =
if lenR < lenFM then checkFg
elsecheckF{F = f, M = snoc (n, $rev r), LenFM =lenFM+lenR, R =[], LenR =
and checkF{F =[], M = Empty, ...} = Empty
| checkF{F =[], M = m, LenFM =lenF'M, R =r, LenR =lenR}) =
Queue{F = force (headn), M = tail m, LenFM =lenFM,R =r, LenR =lenR}
| checkFq = Queuey

and snoc (Emptyz) = Queue{F = [z], M = Empty, LenFM =1, R=[],LenR =0
| snoc (QueudF =f, M =m, LenFM =lenFM, R =r, LenR =lenR}, z) =
queue{F =f, M =m, LenFM =lenFM,R =z :: r, LenR =lenR+1}
and head Empty raise EMPTY
| head (QueugF ==z :: f,...}) =z
and tail Empty =raise EMPTY
| tail (Queue{F =z :: f, M =m, LenFM =lenF'M, R =r, LenR =lenR}) =
queue{F =f, M =m, LenFM =lenFM -1, R =r, LenR =lenR}
end

Figure 7.1: Bootstrapped queues based on structural decomposition.

and checkF{F =[], M = Empty, ...} = Empty
| checkF{F =[], M = m, LenFM =lenF'M, R =r, LenR =lenR}) =
Queue{F = force (headn), M = tail m, LenFM =lenFM, R =r, LenR =lenR}
| checkF¢ = Queuey

Note thatqueue and checkF call snoc andtail, which in turn callqueue. These functions
must therefore all be defined mutually recursively. The complete implet@mi@ppears in
Figure 7.1.

Remark: Toimplementthese queues without polymorphic recursion, we redefine the datatype
as
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datatype o ElemOrList = Elemof « | List of  ElemOrList list susp
datatype o Queue =
Empty
| Queueof {F : « ElemOrList list, M :ae Queue, LenFM : int,
R : o ElemOrList list, LenR : int}

Thensnoc andhead add and remove th&lem constructor when inserting or inspecting an ele-
ment, andyueue andcheckF add and remove théist constructor when inserting or removing
a list from M. &

These queues create a suspension to reverse the rear list at exactipehtesaas banker’s
gueues, and force the suspension one operation earlier than banker’s queues. Thilng stAce
verse computation contributes orthy 1) amortized time to each operation on banker’s queues,
it also contributes only)(1) amortized time to each operation on bootstrapped queues. How-
ever, the running time of thenoc andtail operations is not constant! Note thatoc calls
queue, Which in turn might callsnoc on M. In this way we might get a cascade of calls to
snoc, one at each level of the queue. However, successive ligtt &t least double in size so
the length ofM is O(log n). Since the size of the middle queue decreases by at least a logarith-
mic factor at each level, the entire queue can only have defily” n). snoc performsO(1)
amortized work at each level, so in totaloc requiresO(log™ ») amortized time.

Similarly, tail might result in recursive calls to botthoc andtail. The snoc might in turn
recursively callsnoc and thetail might recursively call botnoc andtail. However, for any
given level,snoc andtail can not both recursively cathoc. Therefore, botlnoc andtail are
each called at most once per level. Since bottr andt«il do O(1) amortized work at each
level, the total amortized cost o/ is alsoO(log™ n).

Remark: O(log™n) is constant in practice. To have a depth of more than five, a queue would
need to contain at leagt®>*¢ elements. In fact, if one represents queues of up to size 4 simply
as lists, then all queues with fewer than about 4 billion elements will havaore than three
levels. <&

Although it makes no difference in practice, one could reduce the amortized rummiag t
of snoc andtail to O(1) by wrappingM in a suspension and executing all operationsibn
lazily. The type ofM then becomes list susp Queue susp.

Yet another variation that yields(1) behavior is to abandon structural decomposition and
simply use a stream of typelist susp Stream for M. Then every queue has exactly two levels.
Adding a new list suspension to the end of the stream with + t@ke¥/|) time, but, since
+ is incremental, this cost can be amortized over the operations on thevegeue. Since
these queues are not recursive, we have no need for polymorphic recursion. THiswvasia
explored in greater detail in [Oka96a].
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Hint to Practitioners: In practice, variations on these queues are the fastest known ifnple-
mentations for applications that use persistence sparingly, but that require goetbelkian
in pathological cases.

7.2 Structural Abstraction

The second kind of data-structural bootstrappingtractural abstractionwhich is typically
used to extend an implementation of collections, such as lists or heapamaticientjoin
function for combining two collections. For many implementations, designing faciesit
insert function, which adds a single element to a collection, is easy, but designin{j@ersf
join function is difficult. Structural abstraction creates collections thataiomther collections
as elements. Then two collections can be joined by simply inserting one temtieto the
other.

The ideas of structural abstraction can largely be described at the letyglesf. Suppose
« C'is a collection datatype with elements of typeand that this datatype supports an efficient
insert function, with signature

valinsert:a x aC—aC

Call o C theprimitive type. From this type, we wish to derive a new datatypB, called the
bootstrappedype, such thatr B supports bothinsert andjoin efficiently, with signatures

valinserg: a x aB—=aB
valjoing:aB xaB —aB

(We use theB subscript to distinguish functions on the bootstrapped type from functions on
the primitive type.) In additionee B should support an efficientnit function for creating a
new singleton collection.

val unitg : a« - o B
Then,insert g can be implemented simply as
fun inserg (2, b) = joing (unitg =, b)

The basic idea of structural abstraction is to somehow represent bootstragleetians as
primitive collections of other bootstrapped collections. Thein g can be implemented in
terms ofinsert (Notinsertg!) roughly as

fun joing (b4, by) = insert (¢, by)



92 Data-Structural Bootstrapping

This insertsh, as an element of,. Alternatively, one could inseft, as an element of;, but
the point is that join has been reduced to simple insertion.

Of course, the situation is not quite that simple. Based on the above descrptiomght
attempt to definer B as

datatypea B=B of (¢ B) C

This definition can be viewed as specifying an isomorphism
aB=(aB)C
By unrolling this isomorphism a few times, we can quickly spot the flaw in this defmi
aB=(@B)C=Z(aB)C)C=-.-=((---C)O)C

The primitive elements of type have disappeared! We can solve this by making each boot-
strapped collection a pair of a single element with a primitive collection.

datatypea B=Bofa x («B)C
Then, for instanceynit g can be defined as
fun unitg = =B (x, empty)

whereempty is the empty primitive collection.

But now we have another problem. If every bootstrapped collection contains aaleas
single element, how do we represent the empty bootstrapped collection? Wetbeesine
the type one more time.

datatypea B = Empty| Bofa x (« B) C

Remark: Actually, we will always arrange that the primitive collectiéhcontains only non-
empty bootstrapped collections. This situation can be described more pydnigek types

datatypea BT =B* of a x (« BY) C
datatype o B = Empty| NonEmptyof B*

Unfortunately, definitions of this form lead to more verbose code. Hence, formietsm
purposes, we will use the earlier less precise, but more concise, definition. &

Now, we can refine the above templatesdotert g andjoin z as
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fun inseriz (z, Empty) = B @, empty)
| insertz (¢, B (y, ¢)) =B (z, insert wnitg y, c))

fun joing (b, Empty) =b
| joing (Empty,b) = b
| joing (B (z, ¢), b) = B (z, insert ¢, ¢))

These templates can easily be varied in several ways. For instanttes second clause of
insert g, we could reverse the roles efandy. Similarly, in the third clause ofoin 5, we could
reverse the roles of the first argument and the second argument.

For any given collection, there is typically some distinguished elementdhdie inspected
or deleted, such as the first element or the smallest elementin¥tvé 5 andjoin ; templates
should be instantiated in such a way that the distinguished element in the houéstreol-
lection B (z, ¢) is « itself. The creative part of designing a bootstrapped data structure using
structural abstraction is implementing thelete 5 routine that discards the distinguished ele-
mentx. After discardingz, we are left with a collection of typex(B) C, which must then be
converted into a bootstrapped collection of typé3. The details of how this is accomplished
vary from data structure to data structure.

We next instantiate these templates in two ways. First, we bootstrap gteesapport
catenation (i.e., append) efficiently. Second, we bootstrap heaps to supportaffiergstly.

7.2.1 Lists With Efficient Catenation

The first data structure we will implement using structural abstracticzaisnable lists, as
specified by the signature in Figure 7.2. Catenable lists extend the usuajiatigie with an
efficient append function (+). As a convenience, catenable lists also supporeven though
we could easily simulatenoc (zs, z) by s # cons (x, empty). Because of this ability to add
elements to the rear of a list, a more accurate name for this data struacule be catenable
output-restricted deques.

We obtain an efficientimplementation of catenable lists that supports altomes inO(1)
amortized time by bootstrapping an efficient implementation of FIFO queuesexBaechoice
of implementation for the primitive queues is largely irrelevant; any ofesistent, constant-
time queue implementations will do, whether amortized or worst-case.

Given an implementatiofy of primitive queues matching theW@uUE signature, structural
abstraction suggests that we can represent catenable lists as

datatype o Cat = Empty| Catof o x « Cat Q.Queue

One way to interpret this type is as a tree where each node contains an ekemaghe children
of each node are stored in a queue from left to right. Since we wish for thel&ratat of the
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signature CATENABLELIST =
sig
type o Cat
exceptionEMPTY

valempty :« Cat
val isEmpty : o« Cat— bool

val cons o X o Cat— o Cat
val snoc o Catx o — o Cat

val + »a Catx « Cat— o Cat

valhead o Cat— « (x raisesEmPTY if list is emptyx)

val tail o Cat— o Cat (xraisesEmMPTY if listis emptyx)
end

Figure 7.2: Signature for catenable lists.

e f 9 h n o p r s i
Figure 7.3: A tree representing the list. . 7.

list to be easily accessible, we will store it at the root of the trees Fhiggests ordering the
elements in a preorder, left-to-right traversal of the tree. A samgiedintaining the elements
a...tis shown in Figure 7.3.

Now, head is simply
fun head (Cat{, ) ==

To catenate two non-empty lists, i@k the two trees by making the second tree the last child
of the first tree.
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Figure 7.4: lllustration of théail operation.

fun zs + Empty =as
| Empty #as = s
| s # ys = link (zs, ys)

wherelink adds its second argument to the queue of its first argument.
fun link (Cat (z, ¢), s) = Cat (z, Q.snoc ¢, s))
cons andsnoc simply call +.

fun cons (¢, xs) = Cat (¢, Q.empty) +us
fun snoc (s, ©) = zs + Cat (¢, Q.empty)

Finally, given a non-empty treegi/ should discard the root and somehow combine the queue
of children into a single tree. If the queue is empty, theih should returnZmpty. Otherwise
we link all the children together.

fun tail (Cat (r, ¢)) = if Q.iISEmptyq then EmptyelselinkAll ¢

Since catenation is associative, we can link the children in any ordelesiee. However, a
little thought reveals that linking the children from right to left, as illaséd in Figure 7.4,

will result in the least duplicated work on subsequent calls:ib Therefore, we implement
linkAll as

fun linkAll ¢ =let val ¢ = Q.heady

val ¢’ = Q.tail ¢
in if Q.iIsEmptyq’ thent elselink (¢, linkAll ¢') end

Remark: [linkAll is an instance of théldr1 program schema. <&
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In this implementationtail may take as much as(») time, but it is not difficult to show
that the amortized cost ol is only O(1), provided lists are used ephemerally. Unfortunately,
this implementation is not efficient when used persistently.

To achieve good amortized bounds even in the face of persistence, we must somehow
corporate lazy evaluation into this implementation. SifiggA/l is the only routine that takes
more tharO(1) time, itis the obvious candidate. We rewritekA!ll to suspend every recursive
call. This suspension is forced when a tree is removed from a queue.

fun linkAll ¢ =let val $t = Q.heady
val ¢’ = Q.tail ¢
inif Q.isEmptyq’ then ¢ elselink (¢, $linkAll ¢") end

For this definition to make sense, every queue must contain tree suspensionthaatitezes,
so we redefine the datatype as

datatype « Cat = Empty| Catof o x « Cat susp Q.Queue
To conform to this new datatype, #+ must spuriously suspend its second argument.

fun zs + Empty =as
| Empty H#as = s
| s # ys = link (zs, $ys)

The complete implementation is shown in Figure 7.5.

head clearly runs inO(1) worst-case time, whileons and snoc have the same time re-
quirements as +. We now prove that + aad run in O(1) amortized time using the banker’s
method. The unshared cost of eaclid ), so we must merely show that each discharges only
O(1) debits.

Let d,(i) be the number of debits on thth node of tree and letD, (1) = >i_, d;(j) be
the cumulative number of debits on all nodeg ap to and including node Finally, let D, be
the total number debits on all nodestifi.e., D; = D.(|t| — 1)). We maintain two invariants
on debits.

First, we require that the number of debits on any node be bounded by the degree of the
node (i.e.d,; (1) < degree,(1)). Since the sum of degrees of all nodes in a non-empty tree is one
less than the size of the tree, this implies that the total number of debitsaa stounded by
the size of the tree (i.el); < |¢|). We will maintain this invariant by incrementing the number
of debits on a node only when we also increment its degree.

Second, we insist that the,(:) be bounded by some linear function anThe particular
linear function we choose is
Di(v) < i+ depth,(v)
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functor CatenableListgtructure Q : QUEUE) : CATENABLELIST =
struct
datatype o Cat = Empty] Catof o x « Cat susp Q.Queue

exceptionEMPTY

val empty = Empty
fun isEmpty Empty = true
| isSEmpty (Catg) = false

fun link (Cat (z, ¢), s) = Cat (z, Q.shoc §, s))
fun linkAll ¢ =let val $t = Q.heady
val ¢’ = Q.tail ¢
inif Q.isEmptyq’ then ¢ elselink (¢, $linkAll ¢’) end

fun zs + Empty =uxs

| Empty +Hzs = as

| s + ys = link (zs, $ys)
fun cons ¢, xs) = Cat (¢, Q.empty) +Hus
fun snoc ¢s, ¢) = zs # Cat ¢, Q.empty)

fun head Empty aise EMPTY
| head (Cat4, ) =«
fun tail Empty =raise EMPTY
| tail (Cat (z, ¢)) = if Q.isEmptyq then EmptyelselinkAll ¢
end

Figure 7.5: Catenable lists.

wheredepth, (i) is the length of the path infrom the root to node. This invariant is called
theleft-linear debit invariant Notice that the left-linear debit invariant guarantees thet) =

D,(0) <0+ 0 = 0, so all debits on a node have been discharged by the time it reaches the
root. (In fact, the root is not even suspended!) The only time we actually fonegpession is
when the suspended node is about become the new root.

Theorem 7.1 # and tail maintain both debit invariants by discharging one and three debits,
respectively.

Proof: (#) The only debit created by + is for the trivial suspension of its second amgfume
Since we are not increasing the degree of this node, we immediately dischargevtiebe
Now, assume that and¢, are non-empty and lét= ¢, +¢,. Letn = |¢;|. Note that the index,
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depth, and cumulative debits of each node,iare unaffected by the catenation, sofer »
Dy(1) Dy, (1)

i + depth (i)

i + depth(:)

A

The nodes in, increase in index by, increase in depth by one, and accumulate the total debits
of ¢{, so

Di(n + 1) Dy, + Dy, (1)

n+ Dl‘2 (Z)

n + i + depth, (z)
n+1i+depth(n+1:)—1

(n+ 1) + depth(n + 1)

AN A

Thus, we do not need to discharge any further debits to maintain the left-tisbdrinvariant.

(tail) Lett’ = tail t. After discarding the root of, we link the childrent,...¢,,_; from
right to left. Lett: be the partial result of linking; ...¢,,_;. Thent' = ¢;. Since every link
except the outermost is suspended, we assign a single debit to the root af each ; <
m — 1. Note that the degree of each of these nodes increases by one. We also assigtoa debit
the root oft/,_, because the last call t0:£All is suspended even though it does not Gak.
Since the degree of this node does not change, we immediately discharge this final debit.

Now, suppose théth node oft appears irt;. By the left-linear debit invariant, we know
that D,(z) < 7 + depth,(1), but consider how each of these quantities changes wittuthe:
decreases by one because the first element is discarded. The depth of each naeaases
by 7 — 1 (see Figure 7.4) while the cumulative debits of each nodeiimcrease byj. Thus,

< i+ depth,(i)+J
= 1+ (depthy(i —=1) = (j = 1))+
= (1—1)+ depthy(t — 1)+ 2
Discharging the first two debits restores the invariant, for a total of ttedats. O

Hint to Practitioners: Given a good implementation of queues, this is the fastest kijown
implementation of persistent catenable lists, especially for appgimsitinat use persistenge
heavily.
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7.2.2 Heaps With Efficient Merging

Next, we apply structural abstraction to heaps to obtain an efficient mergatigpe This
section reflects joint work with Gerth Brodal.

Assume that we have an implementation of heaps that supperts in O(1) worst-case
time andmerge, findMin, and deleteMin in O(logn) worst-case time. The skew binomial
heaps of Section 6.4.2 are one such implementation. Using structural alostractiimprove
the running time of botlfindMin andmerge to O(1) worst-case time.

For now, assume that the type of heaps is polymorphic in the type of elements, and that,
for any type of elements, we magically know the right comparison function to uster e
will account for the fact that both the type of elements and the comparison functidmosa t
elements are fixed at functor-application time.

Under the above assumption, the type of bootstrapped heaps can be given as
datatype o« Heap = Empty Heapof o x (o Heap) H.Heap

whereH is the implementation of primitive heaps. The element stored at any givemnode
will be the minimum element in the subtree rooted at that node. The elements oirthiver
heaps are themselves bootstrapped heaps. Within the primitive heaps, bootshregpe are
ordered with respect to their minimum elements (i.e., their roots).

Since the minimum element is stored at the rgot/Min is simply
fun findMin (Heap ¢, _)) =«

To merge two bootstrapped heaps, we insert the heap with the larger root into the heap with
the smaller root.

fun merge (Emptyh) = A
| merge ¢, Empty) =h
| merge ¢, asHeap (¢, p1), he asHeap {, p2)) =
if 2 < y thenHeap ¢, H.insert (., p;)) elseHeap {, H.insert ¢4, p2))

(In the comparisonr < y, we assume that is the right comparison function for these ele-
ments.) Now;nsert is defined in terms ofnerge.

fun insert (¢, ») = merge (Heap(, H.empty),h)
Finally, we considerielete Min, defined as

fun deleteMin (Heap4, p)) =
if H.isEmptyp then Empty
else let val(Heap (/, p1)) = H.findMin p
val p, = H.deleteMinp
in Heap ¢, H.merge §, p»)) end
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After discarding the root, we first check if the primitive hepps empty. If it is, then the
new heap is empty. Otherwise, we find and remove the minimum elementwhich is the
bootstrapped heap with the overall minimum element; this element becomesuwheoot.
Finally, we mergey; andp, to obtain the new primitive heap.

The analysis of these heaps is simple. CleafilydM:n runs in O(1) worst-case time
regardless of the underlying implementation of primitive heaps:r¢ andmerge depend only
on H .insert. Since we have assumed thatinsert runs inO(1) worst-case time, so dasert
andmerge. Finally, deleteMin calls H.findMin, H.deleteMin, and H.merge. Since each of
these runs i) (log n) worst-case time, so do@sleteMin.

Until now, we have assumed that heaps are polymorphic, but in fact Ha® Kignature
specifies that heaps are monomorphic — both the type of elements and the comparison functi
on those elements are fixed at functor-application time. The implementitiarheap is a
functor that is parameterized by the element type and the comparison functioefdreethe
functor that we use to bootstrap heaps maps heap functors to heap functors, rathezaha
structures to heap structures. Using higher-order functors [MT94], this cardressed as

functor Bootstrap functor MakeH (structure E : ORDERED) : Sig
include HEAP
sharing Elem = E

end)

(structure E : ORDERED) : HEAP = ...

The Bootstrap functor takes théllake H functor as an argument. TheakeH functor takes

the ORDERED structureF/, which contains the element type and the comparison function, and
returns a HAP structure. Given\lake H, Bootstrap returns a functor that takes arrROERED
structureF’ and returns a HAP structure.

Remark: The sharing constraint in the signature for tiekc H functor is necessary to ensure
that the functor returns a heap structure with the desired element type. Thisfkshéring
constraint is extremely common with higher-order functors. <&

Now, to create a structure of primitive heaps with bootstrapped heapsasrake we apply
MakeH to the QRDERED structureBootstrapped H that defines the type of bootstrapped heaps
and a comparison function that orders two bootstrapped heaps by their minimum element
(The ordering relation is undefined on empty bootstrapped heaps.) This is expresbed by
following mutually recursive structure declarations.

structure rec BootstrappedH =
struct
datatype T = Empty| Heapof Elem.T x H.Heap
fun leq (Heap ¢, ), Heap ¢, _)) = Elem.leq ¢, y)
end
and H = MakeH (structure E = BootstrappedH)
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whereFlem is the ORDERED structure specifying the true elements of the bootstrapped heap.
The complete implementation of th&otstrap functor is shown in Figure 7.6.

Remark: Standard ML does not support recursive structure declarations, and for good reason
— this declaration does not make sense ¥otkeH functors that have effects. However, the
MakeH functors to which we might consider applyifpotstrap, such asskewBinomialHeap

from Section 6.4.2, are well-behaved in this respect, and the recursteerpambodied by the
Bootstrap functor does make sense for these functors. It is unfortunate that Standard ML does
not allow us to express bootstrapping in this fashion.

We can still implement bootstrapped heaps in Standard ML by inlining a particiuéce
for MakeH , such asSkewBinomialHeap, and then eliminatingootstrapped H and H as sep-
arate structures. The recursion on structures then reduces to recursiotatypes, which is
supported by Standard ML. &

7.3 Related Work

Data-Structural Bootstrapping Buchsbaunet al. identified data-structural bootstrapping
as a general data structure design technique in [Buc93, BT95, BST95]. Structuoai jplesi-
tion and structural abstraction had previously been used in [Die82] and [DS€8pectively.

Catenable Lists Although it is relatively easy to design alternative representationsrsigpe
tent lists that support efficient catenation (see, for example, [Hug86)), atexmative repre-
sentations seem almost inevitably to sacrifice efficiency ok thé and/ort«il functions.

Myers [Mye84] described a representation based on AVL trees that suppoeieadnt list
functions inO(log n) time.

Driscoll, Sleator, and Tarjan achieved the first sub-logarithmic implaation in [DST94].
They represent catenable listsragry trees with the elements at the leaves. To keep the left-
most leaves near the root, they use a restructuring operation knovui/ @sat removes the first
grandchild of the root and reattaches it directly to the root. Unfortunatelgnesipn breaks
all useful invariants based on this restructuring heuristic, so theyoaced to develop quite
a bit of machinery to support catenation. The resulting implementation suppoetsatan
in O(log log k) worst-case time, wherk is the number of list operations (note thamay be
much smaller than), and all other functions iW(1) worst-case time.

Buchsbaum and Tarjan [BT95] use structural decomposition to recursively decempos
catenable deques of sizeinto catenable deques of sizglogn). They use theyull oper-
ation of Driscoll, Sleator, and Tarjan to keep their tree balanced @felepthO(log n)), and
then use the smaller deques to represent the left and right spines of each. stitnsgelds an



102 Data-Structural Bootstrapping

functor Bootstrap functor MakeH (tructure E : ORDERED) : Sig
include HEAP
sharing Elem = E
end)
(structure E : ORDERED) : HEAP =
struct
structure Elem = E

(* recursive structures not supported in SML)
structure rec BootstrappedH =
struct
datatype T = Empty| Heapof Elem.T x H.Heap
fun leq (Heap ¢, _), Heap ¢, _)) = Elem.leq ¢, y)
end
and H = MakeH (structure E = BootstrappedH)

openBootstrappedH « exposeEmptyandHeapconstructorsx)
type Heap = BootstrappedH.T
exceptionEMPTY

val empty = Empty
fun isEmpty Empty = true
| isSEmpty (Heap.) = false

fun merge (Emptyh) = h
| merge ¢, Empty) =h
| merge (. asHeap ¢, p1), by asHeap ¢, ps)) =
if Elem.leq ¢, y) then Heap ¢, H.insert ¢, p1)) elseHeap {, H.insert @y, p2))
fun insert ¢, h) = merge (Heapa(, H.empty),h)

fun findMin Empty =raise EMPTY
| findMin (Heap ¢, ) =«
fun deleteMin Empty raise EMPTY
| deleteMin (Heap4, p)) =
if H.isEmptyp then Empty
else let val(Heap {/, p1)) = H.findMin p
val p, = H.deleteMinp
in Heap ¢/, H.merge 6y, p2)) end
end

Figure 7.6: Bootstrapped heaps.
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implementation that supports deletion of the first or last elemefi{ing™ k) worst-case time,
and all other deque functions, including catenatior()in) worst-case time.

Kaplan and Tarjan [KT95] finally achieved an implementation that suppagsagon and
all other usual list functions (1) worst-case time. Their data structure is based on the
technique of recursive slowdown. We will describe recursive slowdown eatgr detail in
Chapter 8.

The implementation of catenable lists in Section 7.2.1 first appearedkadf&a]. It is
much simpler than Kaplan and Tarjan’s, but yields amortized bounds rather thaihcase
bounds.

Mergeable Heaps Many imperative implementations suppaoitert, merge, andfindMin in

O(1) amortized time, andelete Min in O(log n) amortized time, including binomial queues
[KL93], Fibonacci heaps [FT87], relaxed heaps [DGST88], V-heaps [Pet8Thrbaip skew
heaps [ST86b], and pairing heaps [FSST86]. However, of these, only pairing heage a

to retain their amortized efficiency when combined with lazy evatuain a persistent set-

ting [Oka96a], and, unfortunately, the bounds for pairing heaps have only been conjectured,
not proved.

Brodal [Bro95, Bro96] achieves equivalent worst-case bounds. His original datise
[Bro95] can be implemented purely functionally (and thus made persistent) by cmglbihe
recursive-slowdown technique of Kaplan and Tarjan [KT95] with a purelytfanal imple-
mentation of real-time deques, such as the real-time deques of Section Sofv8vet, such
an implementation would be both complicated and slow. Brodal and Okasaki fsitmgdi im-
plementation in [BO96], using skew binomial heaps (Section 6.4.2) and struahstahction
(Section 7.2.2).

Polymorphic Recursion Several attempts have been made to extend Standard ML with poly-
morphic recursion, such as [Myc84, Hen93, KTU93]. One complication is that typender

is undecidable in the presence of polymorphic recursion [Hen93, KTU93], even though it is
tractable in practice. Haskell 1.3 {B6] sidesteps this problem by allowing polymorphic re-
cursion whenever the programmer provides an explicit type signature.
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Chapter 8

Implicit Recursive Slowdown

Implicit recursive slowdown is a lazy variant of the recursive-slown technique of Kaplan
and Tarjan [KT95]. We first review recursive slowdown, and then show haw déaaluation

can significantly simplify this technique. Finally, we illustrate imgliecursive slowdown
with implementations of queues and catenable deques.

8.1 Recursive Slowdown

The simplest illustration of recursive slowdown is a variant of binary nusiigat can be
incremented irO(1) worst-case time. (We have already seen several such variantsjiimgl
skew binary numbers and segmented binary numbers.) As always, the trick sd@ascades

of carries. In recursive slowdown, we allow digits to®gl, or 2. 2s exist only temporarily
and represent a carry in progress. To increment a number, we first increineefitst digit,
which is guaranteed not to % We then find the first nod-digit. If itis O, we do nothing,
butifitis 2, we convert it tdd and increment the following digit, which is also guaranteed not
to be2. Changing & to a0 and incrementing the following digit corresponds to executing a
single carry step.

It is easy to show that following the above rules maintains the invarattthe first2 is
preceded by at least o8gand any number dfs) and that any pair &s is separated by at least
one0 (and any number ofs). This invariant guarantees that we never attempt to increment a
digit that is already?.

Since we want the increment function to runxl) worst-case time, we cannot afford to
scan the digits to find the first ndhdigit. Instead, we choose a representation that groups
contiguous blocks of s together.

datatype Digit = Zero | Onesof int | Two
type Nat = Digit list
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The integer associated withines is the size of the block. Now the first ndndigit is either
the first element of théigit list or the second element if the first element i©@es block.

To increment a number, we first blindly increment the first digit, which is eibher 1. If it
is0, it becomed (and possibly joins an existing block d§). Ifitis 1, it become< (possibly
eliminating an existing block dfs). This is achieved by the following function:

fun simplelnc [] = [Ones 1]
| simplelnc (Zero :ds) = ones (14s)
| simplelnc (Oneg: :: ds) = Two :: ones g—1, ds)

where theones pseudo-constructor discards empty blocks and combines adjacent bldcks of

fun ones (0,ds) = ds
| ones {;, Onesk; :: ds) = Ones {;+k) = ds
| ones ¢, ds) = Onesk :: ds

The fizup function finds the first nor- digit, and if it is2, converts it to0 and blindly incre-
ments the following digit.

fun fixup (Two :: ds) = Zero :: simplelnals
| fixup (Onesk :: Two :: ds) = Onesk :: Zero :: simplelncds
| fixup ds = ds

Finally, inc calls simplelne, followed by fizup.

fun inc ds = fixup (simplelncds)

Remark: Actually, in a functional languagérc would typically be implemented using func-
tion composition, as in

val inc = fixup o simpleinc

o is a higher-order operator that takes two functions and returns a function sucfi ¢hat: =
/(g ). &

This implementation can serve as a template for many other data stsictweh a data
structure comprises a sequence of levels, where each level can bkedasxjreen yellow, or
red. Each color corresponds to a digit in the above implementation, gvebr=0, yellow=1,
andred=2. We maintain the invariants that the first red level is preceded byaat e green
level, and that any two red levels are separated by at least one gnesn An operation on
any given object may degrade the first level from green to yellow, or fronowetd red, but
never from green to red. Azup procedure then checks if the first non-yellow level is red, and
if so converts it to green, possibly degrading the following level from gregreliow, or from
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yellow to red. Consecutive yellow levels are grouped in a block to supportesftiaiccess to
the first non-yellow level. Kaplan and Tarjan [KT95] describe two impletagons based on
this template: real-time deques and real-time catenable lists.

8.2 Implicit Recursive Slowdown

The essence of the recursive-slowdown implementation of binary numbers e&hmanfor
executing carries incrementally. By now we have seen many examplesremental functions
implemented with lazy evaluation. By combining the ideas of recursivedsdom with lazy
evaluation, we obtain a new technique, callaglicit recursive slowdowjthat is significantly
simpler than the original.

Consider the following, straightforward implementation of binary numbers aarsis of
Os andls:

datatype Digit = Zero| One
type Nat = Digit Stream

fun inc ($Nil) = $Cons (One$Nil)
| inc ($Cons (Zerods)) = $Cons (Ones)
| inc ($Cons (Oneds)) = $Cons (Zero, inals)

This is exactly the same as the original presentation of binary numbers in Cléagbecept
with streams instead of lists.

Remark: Thisimplementation is less lazy than it could be. It forces its argumeangidiately,
and then creates a suspension of the result. A reasonable alternative woulal$® suspend
forcing the argument, as in

fun inc’ ds = $caseforce ds of
Nil = Cons (One$Nil)
| Cons (Zeroys') = Cons (Oneds’)
| Cons (Onegs’) = Cons (Zero, intds’)

However, in this chapter, we will often need to force one level ahead dutrent level, so we
stick with the first implementation. <&
Theorem 8.1 inc runs inO(1) amortized time.

Proof: We use the banker’'s method. By inspection, the unshared cost & O(1). There-
fore, to show thatnc runs inO(1) amortized time, we must merely show that: discharges
only O(1) debits per operation. In fact, we show thiat discharges only two debits.
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Each suspension except the outermost is the tail of some digit. We allow tloé &0l to
retain a single debit, but require that the tail df &e fully paid off. In addition, the outermost
suspension may not have any debits.

We argue bydebit passing Whenever a suspension has more debits than it is allowed,
we pass those debits to the enclosing suspension, which is the tail of the previous\digit.
discharge debits whenever they reach the outermost suspension. Debit pasdmpécaase
earlier tails must be forced before later tails can be forced. Passapgnsibility for discharg-
ing debits from a later tail to an earlier tail ensures that those debitbeviischarged before
the earlier tail is forced, and hence before the later tail can be forcedsh@le by induction
on the depth of recursion that, after any cascada.af, the outermost suspension always has
two debits that must be discharged.

First, consider a call tonc that changes@to al (i.e., the final call in a cascade). We begin
by creating a debit to cover the cost of the new suspension. In addition, the new sospensi
receives a debit from the current digit’s tail, since that tail's debdvadince has dropped from
one to zero. Altogether, the new suspension has been charged two debits.

Next, consider a call tanc that changes 4 to a0 and recurses. Again, we begin by
creating a debit to cover the cost of the new suspension. When forced, this suspeitision
force the current digit’s tail, but that is okay since the tail df has no debits. Finally, the new
suspension receives a single debit from the recursive calld¢osince that suspension (which
is the tail of a0) is allowed one debit, but, by the inductive hypothesis, has been charged two
debits. Again, the new suspension has been charged a total of two debits. O

As with recursive slowdown, this very simple implementation canesas/a template for
many other data structures. Such a data structure consists of a lazy sequienetsdtligits),
where each level can be classifiedgasen(0) or yellow(1). An operation on an object begins
at the outer level and only occasionally propagates to the next level. In partianloperation
on a green level never propagates to the next level but may degrade the levejrlemto
yellow. Operations on yellow levels may (lazily) propagate to the next |dugl only after
upgrading the current level to green. For example, with binary numbers, incremgend
produces d and stops. Incrementinglarecurses to the next level, but produce8 at the
current level.

The intuition behind this framework is that successive operations at a givehdannot
both propagate to the next level; there is a delay of at least one operation whewehes|
changed from green to yellow. Hence, every other operation may affect toaddevel,
but only every fourth operation may affect the third level, and so on. Inahtivthen, the
amortized cost of a single operation is approximatefy + 1/2 4+ 1/4+1/8 +---) = O(1).
Unfortunately, this clean intuitive picture is complicated by persistet®vever, the above
proof can be generalized to apply to any problem in this framework.

Clearly, implicit recursive slowdown is much simpler than recuestowdown. We have
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eliminated the headache of grouping yellow levels into blocks, and have alsnatat explicit
representations of red levels. In a sense, red levels are stillntrésé they are represented
implicitly as suspended computations that have not yet been executed. However, recursive
slowdown has the advantage that it naturally yields data structures with-gass bounds,
whereas implicit recursive slowdown naturally yields data structuliés amortized bounds.

If desired, we can often regain worst-case bounds using the scheduling technighaptEi@.

We illustrate the use of scheduling on binary numbers.

We extend the type of binary numbers with a schedule of thpgt Stream list. The
elements of this list will be suspended callsidey/nc, wherelazylnc is just theinc function
defined above.

fun lazylnc @Nil) = $Cons (One$Nil)
| lazylnc @BCons (Zeros)) = $Cons (Oneds)
| lazylnc @Cons (Oneds)) = $Cons (Zero, lazyInds)

The initial schedule is empty.

type Nat = Digit Streamx Digit Stream list
val zero = @Nil, [])

To execute a suspension, we simply inspect the first digit of a stream. @ jttlsen there is
another recursive call tuzyInc, SO we put the remaining stream back in the schedule. Ifitis
1, then this call tdazy/nc terminates, so we discard the rest of the stream.

fun exec []1 =[]
| exec (fCons (One,)) :: sched) = sched
| exec (Cons (Zerogs)) :: sched) = ds :: sched

Altogether,inc calls lazyIne, places the resulting stream on the schedule, and then executes
two suspensions from the schedule.

funinc (ds, sched) =
let val ds’ = lazylncds
in (ds’, exec (execds’ :: sched))) end

To show thatine runs inO(1) worst-case time, we prove that, wheneveec executes
a suspension of the forazy/nc ds, ds has already been forced and memoized. Define the
rangeof a call tolazyInc to be the set of indices of all digits altered by tlhaty/nc. Note that
digits for any given range form a (possibly empty) sequenc@sofollowed by al. We say
two ranges overlap if their intersection is non-empty. At any given mojra@htinevaluated
suspensions in a digit stream are at indices in the range of some suspension imetthéesc
Therefore, we can show thdt has already been executed whenever we execute a suspension
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of the form/azylne ds by proving that no two suspensions in the schedule have overlapping
ranges.

In fact, we prove a slightly stronger result. Defineanpleted to be a0 whose suspension
has already been forced and memoized.

Theorem 8.2 inc maintains the invariant that every digit stream contains at least two com-
pletedOs prior to the first range in the schedule, and at least one comp@teetween every
two adjacent ranges in the schedule.

Proof: Consider the situation just before a callite:. Letr; andr, be the first two ranges in
the schedule. Let, andz; be the two complete@s beforer, and letz, be the completed
between-, andr,. Now, before executing two suspensions from the scheduddjrst adds a
new range to the front of the schedule. Note thgtterminates in d that replaces,. Letm
be the number ds inry. There are three cases.

e m = 0. The only digit inry is al, sorg is eliminated by executing a single suspension.
Executing the second suspension forces the first digit oflf this digit is O, then it
becomes the second complete¢along withz;) before the first range. If this digit i,
thenr, is eliminated and, becomes the new first range. The two completed zeros prior
tor, arez; andzs.

e m = 1. The first two digits of the old digit stream weteandO (z,), but they are replaced
with 0 and1. Executing two suspensions evaluates and memoizes both of these digits,
and eliminates,. The leadind replaces;, as one of the two completdls before the
first range.

e m > 2. The first two digits ofr, are both0s. They are both completed by executing the
first two suspensions, and become the two compléghbefore the new first range (the

rest ofry). z; becomes the single completed zero betweesndr; .
O

8.3 Supporting a Decrement Function

We have now presented several implementations of an increment function, lmutreésuch

a function is useless without some other operations on binary numbers, such as adhdition a
comparisons. These operations typically haveiatvg n) cost, since they must inspect ev-

ery digit. In the lazy implementation (without scheduling), a digit stream cositat most

O(log n) debits, so discharging those debits does not increase the asymptotic complexity of
these operations.

But something interesting happens when we consider the decrement function.
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fun dec $Cons (One$Nil)) = $Nil
| dec BCons (Oneds)) = $Cons (Zeroys)
| dec $Cons (Zeros)) = $Cons (One, deds)

Since this function follows exactly the same patternias but with the roles of0 and 1
reversed, we would expect that a similar proof would yield a similar bound. Andcinif does
provided we do not uskothincrements and decrements. However, if we use both functions,
then at least one must be charge@ogn) amortized time. Simply consider a sequence of
increments and decrements that cycle betw#en 1 and2*. In that case, every operation
touches every digit.

But didn’t we prove that both functions run (1) amortized time? What went wrong?
The problem is that the two proofs require contradictory debit invariants. Toepiloatinc
runs inO(1) amortized time, we require that the tail oDehas one debit and the tail oflahas
zero debits. To prove thatec runs inO(1) amortized time, we require that the tail oflehas
one debit and the tail of @ has zero debits. Put another way; needs the green digit to be
smaller than the yellow digit whilécc needs the green digit to be larger than the yellow digit.
We cannot satisfy both requirements simultaneously in this representation.

However, we can achiev@(1) amortized bounds for both operations at the same time by
changing the implementation slightly. For increments, we want the largestaligé yellow,
with a smaller green digit. For decrements, we want the smallest didgpe tpellow, with a
larger green digit. We can satisfy both requirements by allowing digits tb, Be or 3, where
2 is green and and3 are yellow.

This observation leads immediately to the following implementation:

datatype Digit = One| Two | Three
datatype Nat = Digit Stream

fun inc ($Nil) = $Cons (One$Nil)
| inc ($Cons (Onegs)) = $Cons (Two,ds)
| inc ($Cons (Two,ds)) = $Cons (Threeds)
| inc ($Cons (Threeds)) = $Cons (Two, incds)

fun dec $Cons (One$Nil)) = $Nil
| dec Cons (One(s)) = $Cons (Two, dedls)
| dec $Cons (Two,ds)) = $Cons (Oneds)
| dec $Cons (Threeds)) = $Cons (Two,ds)

Now it is simple to show that both functions rundh1) amortized time using a proof in
which the tail of every green digit has one debit and the tail of every yellow Hagtzero
debits.
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8.4 Queues and Deques

As our first substantial example of implicit recursive slowdown, we preseihplementation
of queues that also integrates aspects of numerical representations angrataetomposi-
tion.

A queue is eitheshallowor deep A shallow queue contains either zero or one elements. A
deep queue is decomposed into three segmerfitsnta containing either one or two elements;
arear, containing either zero or one elements; anahiddle which is a suspended queue of
pairs.

datatype o ZeroOne = Zerd Oneof «
datatype o OneTwo = Onéof o | Two' of a x «
datatype oo Queue = Shallovef o ZeroOne
| Deepof {F :  OneTwo, M : ¢ x «) Queue susp, Ra ZeroOné

To add an element to a deep queue using:, we look atk. Ifitis 0, then we add the element
to R. Ifitis 1, then we pair the new element with the existing element, and add the pHiy to
resetting’ to 0. We also need a few special cases for adding an element to a shallow queue.

fun snoc (Shallow Zeroy) = Shallow (Oney)
| snoc (Shallow (One), y) = Deep{F = Twd (z, y), M = $empty, R = Zerd
| snoc (DeedF =/, M =m, R =Zerd, y) = Deep{F =f, M =m, R =0ney}
| snoc (DeedF =/, M=%, R=0nez}, y) =
Deep{F =/, M = $snoc ¢, (z, y)), R = Zerg

Note that in the final clause af.oc, we forceM earlier than we need to. Instead, we could
write this clause as

| snoc (DeedF =/, M =m,R=0nez}, y) =
Deep{F =/, M = $snoc (forcem, (z, v)), R = Zerd

However, this change has no effect on the running time.

To remove an element from a deep queue usitg we look atF'. Ifitis 2, then we simply
remove the element, settifgto 1. Ifitis 1, then we “borrow” a pair fromi/, and setF' to 2.
Again, there are several special cases dealing with shallow queues.

fun tail (Shallow (Oner)) = Shallow Zero
| tail (Deep{F = Twd (z, y), M=m,R=r})=Deep{F=0néy,M=m,R=r}
| tail (Deep{F=0néz,M=%¢, R=r}) =
if iSEmptyq then Shallowr
else let val(y, z) = headg
in Deep{F = Two (y, z), M = $tail ¢, R =r} end
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structure ImplicitQueue : QEUE = (x assumes polymorphic recursio#)
struct
datatype o ZeroOne = Zerd Oneof «
datatype o OneTwo = Onkof « | Two' of a x «
datatype o Queue = Shallovef o ZeroOne
| Deepof {F : o OneTwo, M : (v X «) Queue susp, Ra ZeroOné

exceptionEMPTY

val empty = Shallow Zero
fun isEmpty (Shallow Zero) = true
| iISEmpty_ = false

fun snoc (Shallow Zeroy) = Shallow (Oney)
| snoc (Shallow (One), y) = Deep{F = Twd (z, y), M = $empty, R = Zer¢
| snoc (DeedF =f, M =m, R = Zerd, y) = Deep{F =f, M =m, R =Oney}
| snoc (DeedF =/, M =$¢, R =Onez}, y) = Deep{F =f, M = $snoc ¢, (z, y)), R = Zero
fun head (Shallow Zero) raise EMPTY
| head (Shallow (One)) = «
| head (DeedF=0né z,...}) ==z
| head (DeedF = Twd (z, ), ...}) ==
fun tail (Shallow Zero) =raise EMPTY
| tail (Shallow (Oner)) = Shallow Zero
| tail (Deep{F =Twd (z, y), M=m,R=r})=Deep{F=0néy,M=m, R=r}
| tail (Deep{F=0néz,M=%$¢, R=r}) =
if isSEmptyq then Shallowr
else let val(y, z) = headyq
in Deep{F = Two (y, z), M = $tail ¢, R=r} end
end

Figure 8.1: Queues based on implicit recursive slowdown.

Note that in the last clause ofi/, we have choice but to forc® since we must test whether
M is empty, and if not, query its first pair. However, we can delay the reiczall to tail.
The complete code appears in Figure 8.1.

Remark: This implementation highlights a third simplification that implicit recuesslow-
down offers as compared to ordinary recursive slowdown, along with not etkpliepresent-

ing red nodes and not grouping yellow nodes into blocks. Whereas this implementatitn limi
F' to contain one or two elements aitto contain zero or one elements, an implementation
based on ordinary recursive slowdown would allow bbtand 2 to contain from zero to three
elements. Fo#', O is red,1 is yellow, and2 and3 are green. For, 3 is red,2 is yellow,
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and1 andO are green. We expect the addition of a red digit, but the extra green digit in each
case is surprising. It arises because, under recursive slowdown, when vegtather/’ or R

from red to green by doing a “carry” or “borrow”, we must ensure that the othess gleen

by doing a second “carry” or “borrow”, if necessary. So, for instance, when weetbfi from

red to green, if is 3 (red), then we move two elements to the middle, changirig 1. If R

is 2 (yellow), then again we move two elements to the middle, changing0. Without the
second green digit, there would be no way to convert a yellow node to a green node.<

To analyze this implementation, we assign debits to every suspension, eabitlofisithe
middle field of some deep queue. We adopt a debit invariant that allows each saspens
number of debits governed by the colors of the front and rear figlds green if it is2 and
yellow ifitis 1. R is greenifitisO and yellowifitisl. M may have two debits if both’ and
R are green, one debit if one éf and R is green, and zero debits if bothand i are yellow.

Theorem 8.3 snoc andtail run in O(1) amortized time.

Proof: The unshared cost of each function’isl ), so we must merely show that both func-
tions discharge no more thaw(1) debits. The analysis of both functions is identical, so we
describe only thea:/ function.

We argue by debit passing. Each cascade:df ends in a call tagail that changes”
from 2 to 1. (For simplicity of presentation, we ignore the possibility of shallow queues).
This decreases the debit allowanceldfby one, so we pass the excess debit to the enclosing
suspension.

Every intermediate call teni:/ changed” from 1 to 2 and recurses. There are two subcases:

e R is0. M has one debit, which must be discharged befdrean be forced. We pass
this debit to the enclosing suspension. We create one debit to cover the unshared cost
of the suspended recursive call. In addition, this suspension is passed one debit by the
recursive call. Since this suspension has a debit allowance of two, we are done.

e Ris1l. M has zero debits, so we can force it for free. We create one debit to dwver t
unshared cost of the suspended recursive call. In addition, this suspension tsqasse
debit by the recursive call. Since this suspension has a debit allowance of okeewe
one debit and pass the other to the enclosing suspension.

Every call totail passes one debit to its enclosing suspension, except the outermost call,
which has no enclosing suspension. That call simply discharges its excess debit. O

Remark: In practice, these queues are slower than the implementations in Chapteend,
7. However, like many other numerical representations, these queues hawyvémage of
supporting random access efficiently. In particular, we kahup or update the:th element
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in O(log ¢) time. As with the numerical representations in Chapter 6, these queues cantain
logarithmic number of trees of logarithmic depth. Random access is a two stagesguaice
finding the right tree and then finding the right element.

In the implementation as presented, the presence of trees is somewhat obgdinedse
of structural decomposition. However, recall that the first level contdamments, the second
level contains pairs of elements, the third level contains pairs of paireofezits, and so on.
These are just complete binary leaf trees. &

Finally, we show how to modify this implementation of queues to support double-ended
gueues. To support deques, we must be able to insert or remove elements frortheifhamt
or rear. This is analogous to supporting both increments and decrements for binary sumber
We saw in Section 8.3 that this could be accomplished by allowing digits to cvegé, 2, and
3. Thus, to implement deques, we modify the earlier implementation to allowthetfront
and rear fields of a deep queue to contain one, two, or three elements. This imatomeis
shown in Figure 8.2. The analysis is almost identical to that of queues, excefistbat3s
are yellow, an®s are green.

We can also easily implement several forms of restricted dequesdingl

¢ Output-restricted dequewhich support insertions on both sides, but removals only from
the front. We allow the front field to contain one, two, or three elements, buethdield
to contain only zero or one elements.

¢ Input-restricted dequesvhich support removals from both sides, but insertions only at
the front. We allow the front field to contain one, two, or three elements, butetre
field to contain only one or two elements.

8.5 Catenable Double-Ended Queues

Finally, we use implicit recursive slowdown to implement catenable deebtked queues,
with the signature shown in Figure 8.3. We first describe a relatively sinmpplementation
that supports + i (log n) amortized time and all other operations@il) amortized time.

We then describe a much more complicated implementation that improvasthieg time of

#+1t00(1).

Consider the following representation for catenable double-ended queuedeques A
c-deque is eitheshallowor deep A shallow c-deque is simply an ordinary deque, such as those
presented in Chapter 5 or in the previous section. A deep c-deque is decomposede@ato thr
segments: &ont, amiddle and arear. The front and rear are both ordinary deques containing
two or more elements each. The middle is a c-deque of ordinary deques, each corteaning
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structure ImplicitDeque : DEQUE=  (x assumes polymorphic recursio#)
struct
datatype oo D = Zero| Oneof o | Two of of & x o | Threeof o X o X «
datatype o Queue = Shallovef « D
| Deepof {F:a D,M: (a x «) Queue susp, Ra D}

exceptionEMPTY

val empty = Shallow Zero
fun isEmpty (Shallow Zero) = true
| iISEmpty_ = false

fun dcons ¢, Zero) = Oner fun dsnoc (Zeroy) = Onex

| dcons ¢, Onea) = Two (z, a) | dsnoc (Oner, z) = Two (a, =)

| dcons ¢, Two (a, b)) = Three ¢, a, b) | dsnoc (Two ¢, b), ) = Three ¢, b, z)
fun dhead Zero Faise EMPTY fun dlast Zero raise EMPTY

| dhead (One) =« | dlast (Onex) = a

| dhead (Two ¢, b)) = a | dlast (Two @, b)) = b

| dhead (Threed; b, ¢)) = a | dlast (Three ¢, b, ¢)) = ¢
fun dtail Zero =raise EMPTY fun dinit Zero =raise EMPTY

| dtail (Onea) = Zero | dinit (Onea) = Zero

| dtail (Two (a, b)) = Oneb | dinit (Two (a, b)) = Onea

| dtail (Three ¢, b, ¢)) = Two (b, ¢) | dinit (Three @, b, ¢)) = Two (a, b)

fun cons ¢, Shallow (Threed, b, ¢))) = Deep{F = Two (z, ), M = $empty, R = Two ¢, ¢)}
| cons (¢, Shallowd) = Shallow (dcons¥, d))
| cons (¢, Deep{F = Three ¢, b, ¢), M=m,R=r})=
Deep{F = Two (z, a), M = $cons (¢, c), forcem), R =r}
| cons ¢, Deep{F =f,M=m, R=r})=Deep{F=dcons ¢, ), M=m,R=r}
fun head (Shallow!) = dheadd
| head (DeedF =/, ...}) = dheadf
fun tail (Shallowd) = Shallow (dtaild)
| tail (Deep{F = Onea, M =$ps, R=r}) =
if iSEmptyps then Shallowr
else let val(b, ¢) = headps
in Deep{F = Two (b, ¢), M = $tail ps, R=r} end
| tail (Deep{F =f, M =m, R =r}) =Deep{F =dtailf, M=m, R =r}

...shoc, last, and init defined symmetrically. . .
end

Figure 8.2: Double-ended queues based on implicit recursive slowdown.
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signature CATENABLEDEQUE =
sig

type o Cat

exceptionEMPTY

valempty :« Cat
val isEmpty : o« Cat— bool

val cons o X o Cat— o Cat

valhead o Cat— « (x raisesEmMPTY if deque is empty)
val tail » o Cat— o Cat (x raiseseEMPTY if deque is empty)
valsnoc o Catx a — o Cat
val last roCat— « (x raisesEmMPTY if deque is empty)
val init : o Cat— « Cat (x raiseseEMPTY if deque is empty)
val + »a Catx « Cat— o Cat

end

Figure 8.3: Signature for catenable double-ended queues.

or more elements. We assume tliats an implementation of deques satisfying the signature
DEQUE.

datatype o Cat = Shallowof o D.Queue
| Deepof {F : o D.Queue, M « D.Queue Cat susp, Ry D.Queué

Note that this definition assumes polymorphic recursion.

To insert an element at either end, we simply insert the element into diéont deque
or the rear deque. For instancey:s is implemented as

fun cons (¢, Shallowd) = Shallow (D.cons#, d))
| cons ¢, Deep{F =/,M=m,R =r})=Deep{F=D.cons ¢, f),M=m,R=r}

To remove an element from either end, we remove an element from dinérant deque or
the rear deque. If this drops the length of that deque below two, then we remove theaquext de
from the middle, add the one remaining element from the old deque, and install titea®es
the new front or rear. With the addition of the remaining element from the old debge, t
new deque now contains at least three elements, so the next operation on that degoe wil
propagate to the next level. For example, the codedadrs

fun tail (Shallowd) = Shallow (D.taild)
| tail (Deep{F=f,M=m,R=r})=
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if D.sizef > 2then Deep{F =D.tailf, M=m,R =r}
else ifisEmpty (forcem) then Shallowr
elseDeep{F = D.cons (D.lasf, head (forcen)), M = $tail (forcem), R =r}

It is simple to see that the proof techniques of this chapter will yi{d) amortized time
bounds on each of these functions.

But what about catenation? To catenate two deep c-deq@eslc,;, we retain the front of
¢, as the new front, the rear of as the new rear, and combine the remaining segments into the
new middle by inserting the rear of into the middle of;,, and the front ot:, into the middle
of ¢,, and then catenating the results.

fun (Deep{F=/f;,M=m;, R=1r}) # (Deep{F =, M=my, R=ry}) =
Deep{F = f;, M = $(snoc (forcem,, r) # cons (;, forcem,)), R =}

(Of course, there are also cases wharand/orc, are shallow.) Note that + recurses to the
depth of the shallower c-deque. Furthermore, + cre@{as debits per level, which must be
immediately discharged to restore the debit invariant required byatthéunction. Therefore,
4 runs inO(min(log ny, log ny)) amortized time, where; is the size ot;.

The complete code for this implementation of c-deques appears in Figure 8.4.

To improve the running time of + t@(1) we modify the representation of c-deques so
that + does not recurse. The key is to enable + at one level to callconkyand snoc at
the next level. Instead of a front, a middle, and a rear, we expand deep c-deqoggatio
five segments: #&ont (1), anantemedial(A), a middle (3/), a postmedial(B), and arear
(R). F', M, and R are all ordinary deques’ and R contain three or more elements each,
and M contains two or more elementsd and B are c-deques ofompound elementsA
degenerate compound element is simply an ordinary deque containing two or more slement
A full compound element has three segmentsfroat (/'), a middle (C), and arear (R),
where F' and R are ordinary deques containing at least two elements each{ aisda c-
deque of compound elements. This datatype can be written in Standard ML (with pplyimor
recursion) as

datatype o Cat = Shallowof o D.Queue
| Deepof {F : « D.Queue £ > 3 %),
A : o CmpdElem Cat susp,
M : o D.Queue £ > 2 %),
B : o« CmpdElem Cat susp,
R :a D.Queue £ > 3 x)}
and o« CmpdElem = Simplef o D.Queue £ > 2 x)
| CEof {F : a D.Queue £ > 2 x),
C : « CmpdElem Cat susp,
R :a D.Queue £ > 2 )}
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functor SimpleCatenableDequst(ucture D : DEQUE) : CATENABLEDEQUE =
(* assumes polymorphic recursion)
struct
datatype o Cat = Shallowof « D.Queue
| Deepof {F : @« D.Queue, M v D.Queue Cat susp, R D.Queué

exceptionEMPTY

val empty = Shallow D.empty
fun isEmpty (Shallowd) = D.isEmptyd
| iISEmpty_ = false

fun cons ¢, Shallowd) = Shallow (D.consX%, d))
| cons ¢, Deep{F=f,M=m,R=r})=Deep{F=D.cons g, f), M=m,R=r}
fun head (Shallow!) = if D.isEmptyd then raise EMPTY elseD.headd
| head (DeedF =/, ...}) = D.headf
fun tail (Shallowd) = if D.isEmptyd then raiseEMPTY elseShallow (D.taild)
| tail (Deep{F=f,M=m,R=r})=
if D.sizef > 2then Deep{F =D.tailf, M=m, R=r}
else ifisEmpty (forcem) then Shallowr
elseDeep{F = D.cons (D.lasf, head (forcen)), M = $tail (forcem), R =r}

...shoc, last, and init defined symmetrically. . .

fun shortAppendL {;, dz) = if D.isEmptyd, then d; elseD.cons (D.head, ds)
fun shortAppendRd;, d;) = if D.iSEmptyd, then d; elseD.snoc ¢, D.lastd,)

fun (Shallowd,) + (Shallowd,) =

if D.sized; < 2then Shallow (shortAppendLd;, d3))
else ifD.sized, < 2 then Shallow (shortAppendR{(, d;))
elseDeep{F =d;, M = $empty, R =d }

| (Shallowd) + (Deep{F=f,M=m, R=r}) =
if D.sized < 2then Deep{F = shortAppendLd, /), M=m, R =r}
elseDeep{F =d, M = $cons (, forcem), R=r}

| (Deep{F =f,M=m, R =r})+ (Shallowd) =
if D.sized < 2then Deep{F =f, M = m, R = shortAppendRy(, d)}
elseDeep{F =f, M = $snoc (forcem, r), R =d}

| (Deep{F :fl, M=m,R :Tl}) +H (Deep{F :fz, M=my, R :TQ}) =
Deep{F = f;, M = $(snoc (forcem,, r;) + cons {, forcems)), R =r,}

end

Figure 8.4: Simple catenable deques.
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NOW, given two deep C'deque$ = <1717 Al, Ml, Bl, R1> and02 = <1727 AQ, MQ, BQ, R2>, we
compute their catenation as follows: First, we ret&jras the front of the result, an@, as the

rear of the result. Next, we build the new middle deque from the last eleméiitanid the first
element off,. We then combiné/,, B;, and the rest of?, into a compound element, which

we snoc onto A;. This becomes the antemedial segment of the result. Finally, we combine the
rest of /', Ay, and M, into a compound element, which wens onto B,. This becomes the
postmedial segment of the result. Altogether, this is implemented as

fun (Deep{F=fi,A=a;,M=m;,B=0b;,R=1})
+H (Deep{F :fg, A= s, M= msy, B = bg, R :7“2}) =
let val (r{, m, f;) = share {4, f2)
val a; = $snoc (forcer;, CE{F =m;, A= b, R=1r})
val b}, = $cons (CE{F =], A= az, R=m,}, forceb,)
in Deep{F=f,,A=a;,M=m,B=0,,R=r,} end

where

fun share (, ) = (D.init f, D.cons (D.lasf, D.cons (D.head, D.empty)), D.tailr)

fun cons ¢, Deep{F=f,A=a,M=m,B=b,R=r}) =
Deep{F =D.cons ¢, f),A=a,M=m,B=b,R=r})

fun snoc (DeegdF=f,A=a,M=m,B=b,R=r},2) =
Deep{F=f,A=a,M=m,B=b,R=D.snoc {, z)})
(For simplicity of presentation, we have ignored all cases involving shaitoeques.)

Unfortunately, in this implementatiorgi/ andinit are downright messy. Since the two
functions are symmetric, we describe ontyl. Given some deep c-deque- (F', A, M, B, R),
there are six cases:

o |F|> 3.
o |F|=3.

— Ais non-empty.

« The first compound element df is degenerate.
« The first compound element df is full.

— Ais empty andB is non-empty.

« The first compound element &f is degenerate.
« The first compound element &f is full.

— A andB are both empty.
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Here we describe the behavioriaf! ¢ in the first three cases. The remaining cases are covered
by the complete implementation in Figures 8.5 and 8.6/'|f> 3 then we simply replacé’

with D.tail F. If |F| = 3, then removing an element frofm would drop its length below the
allowable minimum. Therefore, we remove a new front deque froamd combine it with the
remaining two elements of the old. The newF' contains at least four elements, so the next
call to ta:l will fall into the |F'| > 3 case.

When we remove the first compound elementdofo find the new front deque, we get
either a degenerate compound element or a full compound element. If we get a degenerate
compound element (i.e., a simple deque), then the new valddo$tail (force A). If we get
a full compound elementr”’, C’, R’), then F’ becomes the new (along with the remaining
elements of the old’), and the new value ot is

$(force C’ + cons (Simpler’, tail (force A)))

But note that the effect of th@ns andtail is to replace the first element d@f. We can do this
directly, and avoid an unnecessary calt4@, using the functioneplace Head.

fun replaceHead:(, Shallowd) = Shallow (D.cons#, D.tail d))
| replaceHead:(, Deep{F =f,A=a,M=m,B=b,R=r}) =
Deep{F =D.cons {, D.tail /), A=a,M=m,B=0,R=1})

The remaining cases o#:/ are similar, each doin@(1) work followed by at most one call to
tail.

The cons, snoc, head, andlast functions make no use of lazy evaluation, and are easily
seen to take)(1) worst-case time. We analyze the remaining functions using the banker’s
method and debit passing.

As always, we assign debits to every suspension, each of which is the arae(rigdr
postmedial ) segment of a deep c-deque, or the middlg 6f a compound element. Each
(' field is allowed four debits, butt and B fields may have from zero to five debits, based
on the lengths of thé’ and R fields. A and B have a base allowance of zero debits.FIf
contains more than three elements, then the allowanca focreases by four debits and the
allowance forB increases by one debit. Similarly,&f contains more than three elements, then
the allowance fo3 increases by four debits and the allowance4ancreases by one debit.

Theorem 8.4 +, tail, andinit run in O(1) amortized time.

Proof: (#) The interesting case is catenating two deep c-deques (Fy, Ay, My, By, Ry)

andcy = (Fy, Az, Ma, By, Ry). In that case, + doe@(1) unshared work and discharges at
most four debits. First, we create two debits for the susperdedand cons onto A; and B,,
respectively. We always discharge these two debits. In additiéh,of A, has five debits, then

we must discharge one debit when that segment becomes the middle of a compound element.
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functor ImplicitCatenableDequesfructure D : DEQUE) : CATENABLEDEQUE =
struct
datatype o Cat = Shallowof « D.Queue
| Deepof {F : @ D.Queue, A .« CmpdElem Cat susp, Ma D.Queue,
B : « CmpdElem Cat susp, Ru D.Queué
and o CmpdElem = Simplef o D.Queue
| CEof {F:a D.Queue, A @ CmpdElem Cat susp, Ru D.Queué

exceptionEMPTY

val empty = Shallow D.empty
fun isEmpty (Shallowd) = D.isEmptyd
| iISEmpty_ = false

fun cons ¢, Shallowd) = Shallow (D.consX%, d))
| cons ¢, Deep{F=f,A=a,M=m,B=b,R=r})=
Deep{F=D.cons g, f),A=a,M=m,B=b,R=r})
fun head (Shallow!) = if D.isEmptyd then raise EMPTY elseD.headd
| head (DeedF =/, ...}) = D.headf

...snhoc and last defined symmetrically. . .

fun share f, r) = (D.init f, D.cons (D.lasf, D.cons (D.head, D.empty)), D.tailr)
fun shortAppendL {;, d;) =

if D.isEmptyd; then d; elseshortAppendL (D.initd;, D.cons (D.lastl;, d5))
fun shortAppendRd;, ds) =

if D.isEmptyd, then d; elseshortAppendR (D.snoc!(, D.headd,), D.tail dy)

fun (Shallowd,) + (Shallowd,) =
if D.sized; < 4then Shallow (shortAppendLd;, d;))
else ifD.sized, < 4 then Shallow (shortAppendR{(, d;))
else letval(f, m, r) = share ¢, ds)
in Deep{F =f, A = $empty, M =m, B =$empty, R =r} end
| (Shallowd) + (Deep{F=f,A=a,M=m,B=b,R=r}) =
if D.sized < 3then Deep{F = shortAppendLd, f),A=a,M=m,B=5b,R=r}
elseDeep{F = d, A = $cons (Simplef, forcea), M=m,B=5b, R=r}
| (Deep{F=f,A=a,M=m,B=0,R=r})+ (Shallowd) =
if D.sized < 3then Deep{F =f, A=a, M =m, B =0, R =shortAppendR, d)}
elseDeep{F =f, A= a, M = m, B =$snoc (forceb, Simpler), R =d}
| (Deep{F :fl, A= arp, M= my, B= bl, R :Tl})
+H (Deep{F :fz, A= as, M = ma, B = bz, R :TQ}) =
let val (r{, m, fJ) = share {1, )
val a; = $snoc (forces;, CE{F =my, A=, R=r{})
val b}, = $cons (CE{F = f,, A= az, R =my}, force by)
in Deep{F=f;,A=a;,M=m,B=0},R=r;} end

Figure 8.5: Catenable deques using implicit recursive slowdown (part I).
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fun replaceHead(, Shallowd) = Shallow (D.cons%, D.tail d))
| replaceHead:(, Deep{F = f, A=a, M=m,B=b,R=r}) =
Deep{F =D.cons {, D.tail f), A=a,M=m,B=b,R=r})

fun tail (Shallowd) = if D.isEmptyd then raiseEMPTY elseShallow (D.taild)
| tail (Deep{F=f,A=a,M=m,B=b,R=r})=
if D.sizef > 3thenDeep{F=D.tailf,A=a,M=m,B=b,R=r}
else ifnot (isEmpty (forcer)) then
casehead (forcen) of
Simpled =
let val f = shortAppendL (D.taif, d)
in Deep{F =, A = $tail (force¢), M=m,B=5b,R=r}end
|CE{F=f',A=d,R=1'} =
let val f”" = shortAppendL (D.taif, /)
val o’ = $(force o’ + replaceHead (Simplé, force a))
in Deep{F=f",A=d",M=m,B=b,R=r} end
else ifnot (isEmpty (forceb)) then
casehead (forceb) of
Simpled =
let val f/ = shortAppendL (D.taif, m)
in Deep{F =/, A = $empty, M =d, B = $tail (force ), R =r} end
|CE{F=f',A=d,R=1'} =
let val f” = shortAppendL (D.taif, m)
val «” = $cons (Simplg”’, forcea’)
in Deep{F=f",A=d", M=/, B =%tall (forceb), R=r} end
elseShallow (shortAppendL (D.tajf, m)) + Shallowr

...replacelLast and init defined symmetrically. ..
end

Figure 8.6: Catenable deques using implicit recursive slowdown (part I1).
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Also, if F} has only three elements btit has more than three elements, then we must discharge
a debit fromB, as it becomes the new. Similarly for £, and k,. However, note that i3,

has five debits, thel; has more than three elements, and that.ithas five debits, therk,

has more than three elements. Therefore, we must discharge at most four ebéthar, or

at least pass those debits to an enclosing suspension.

(tail andinit) Sincetail andinit are symmetric, we include the argument only fofl.
By inspection,tail doesO(1) unshared work, so we must show that it discharges 6tily)
debits. In fact, we show that it discharges at most five debits.

Sincetail can call itself recursively, we must account for a cascadei@$. We argue by
debit passing. Given some deep c-deque (F', A, M, B, R), there is one case for each case
of tail.

If |[F'| > 3, then this is the end of a cascade. We create no new debits, but removing an
element from/” might decrease the allowance.éfby four debits, and the allowance 6fby
one debit, so we pass these debits to the enclosing suspension.

If |F| = 3, then assumel is non-empty. (The cases whe#eis empty are similar.) If
|R| > 3, thenA might have one debit, which we pass to the enclosing suspension. Otherwise,
A has no debits. If the head df is a degenerate compound element (i.e., a simple deque of
elements), then this becomes the nBwlong with the remaining elements of the did The
new A is a suspension of the tail of the ald This suspension receives at most five debits from
the recursive call taail. Since the new allowance df is at least four debits, we pass at most
one of these debits to the enclosing suspension, for a total of at most two debitsaljA¢he
total is at most one debit since we pass one debit here exactly in the case thdtrvee lave
to pass one debit for the origindl).

Otherwise, if the head ofl is a full compound elementr’, C’, R’), thenF’ becomes the
new F' along with the remaining elements of the adld The newA involves calls to #+ and
replaceHead. The total number of debits on the nelns nine: four debits fron(”, four debits
from the +, and one newly created debit for thelace Head . The allowance for the new is
either four or five, so we pass either five or four of these nine debits to the enctaspgnsion.
Since we pass four of these debits exactly in the case that we had to pass oneodekiief
original A, we always pass at most five debits. O

8.6 Related Work

Recursive Slowdown Kaplan and Tarjan introduced recursive slowdown in [KT95], and
used it again in [KT96b], but it is closely related to the regularity caasts of Guibas et
al. [GMPR77]. Brodal [Bro95] used a similar technique to implement heaps.
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Implicit Recursive Slowdown and Binomial Heaps Lazy implementations of binomial
heaps [Kin94, Oka96b] can be viewed as using implicit recursive slowdown. Sydémen-
tations supportnsert in O(1) amortized time and all other operations@log n) amortized
time. [Oka96b] extends a lazy implementation of binomial heaps with schedulingptove
these bounds to worst-case.

Catenable Deques Buchsbaum and Tarjan [BT95] presented a purely functional implemen-
tation of catenable deques that suppedisandinit in O(log™ n) worst-case time and all other
operations inD(1) worst-case time. Our implementation improves that bound(tb) for all
operations, although in the amortized rather than worst-case sense. Kagléargn have in-
dependently developed a similar implementation with worst-case bounds [KTi96ajever,

the details of their implementation are quite complicated.
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Chapter 9

Conclusions

In the preceding chapters, we have described a framework for designing andirgalymc-

tional amortized data structures (Chapter 3), a method for eliminating esaioot from such
data structures (Chapter 4), four general data structure design techniques (€Bap)e and
sixteen new implementations of specific data structures. We next step backflaetion the
significance of this work.

9.1 Functional Programming

Functional programming languages have historically suffered from the reputatibaimg
slow. Regardless of the advances in compiler technology, functional programsewdt be
faster than their imperative counterparts as long as the algorithmslaleaitefunctional pro-
grammers are significantly slower than those available to imperatogg@mmers. This thesis
provides numerous functional data structures that are asymptotically just @sregffas the
best imperative implementations. More importantly, we also provide numeraigndech-
niques so that functional programmers can create their own data strucustsnezed to their
particular needs.

Our most significant contribution to the field of functional programming, howevehds
new understanding of the relationship between amortization and lazy evaluatitime one
direction, the techniques of amortized analysis — suitably extended as in CBaptgoro-
vide the first practical approach to estimating the complexity of lazy progrdPnaviously,
functional programmers often had no better option than to pretend their lazy progvare
actually strict.

In the other direction, lazy evaluation allows us to implement amortizéa stauctures
that are efficient even when used persistently. Amortized data steschne desirable because
they are often both simpler and faster than their worst-case counterjétteout exception,
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the amortized data structures described in this thesis are significamibyes than compet-

ing worst-case desigrisBecause of the overheads of lazy evaluation, however, our amortized
data structures are not necessarily faster than their strict wosstamausins. When used in a
mostly single-threaded fashion, our implementations are often slower thametiogy imple-
mentations not based on memoization, because most of the time spent doing memaization
wasted. However, when persistence is used heavily, memoization marpahafor itself and

our implementations fly.

In a followup to [Pip96], Bird, Jones, and de Moor [BJdM96] have recently exhilzate
problem for which a lazy solution exists that is asymptotically superior toparsgible strict
solution. However, this result depends on several extremely restragai@mptions. Our work
suggests a promising approach towards removing these restrictions. Whatiiiedeis an
example of a data structure for which a lazy, amortized solution existsslasymptotically
superior to any possible strict, worst-case solution. Unfortunately, atithés we know of no
such data structure — for every lazy, amortized data structure we haedoged, there is a
strict, worst-case data structure with equivalent bounds, albeit one thatésaomplicated.

9.2 Persistent Data Structures

We have shown that memoization, in the form of lazy evaluation, can redodvapparent
conflict between amortization and persistence. We expect to see maimstgrearamortized
data structures based on these ideas in the coming years.

We have also reinforced the observation that functional programming is atesxtcakdium
for developing new persistent data structures, even when the target languagpeiative. It
is trivial to implement most functional data structures in an imperaavgliage such as C,
and such implementations suffer few of the complications and overheads ésdadid other
methods for implementing persistent data structures, such as [DSST89]e@9DiFurther-
more, unlike these other methods, functional programming has no problems with data struc
tures that support combining functions such as list catenation. It is no surprisiaehagst
persistent implementations of data structures such as catenable IisiiSe2.1) and caten-
able deques (Section 8.5) are all purely functional (see also [KT95, KT96a]).

9.3 Programming Language Design

Next, we briefly discuss the implications of this work on programming language design.

1As partial evidence for this fact, we note that only one otheanplementations takes more than one page.
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Order of Evaluation Most functional programming languages support either strict evalu-
ation or lazy evaluation, but not both. Algorithmically, the two orders of evalaafulfill
complementary roles — strict evaluation is useful in implementing weoaise data structures
and lazy evaluation is useful in implementing amortized data structliresefore, functional
programming languages that purport to be general-purpose should suppori$eathation
offers a lightweight syntax for integrating lazy evaluation into a predominairiigt language.

Polymorphic Recursion Data structures based on structural decomposition, such as those in
Chapters 7 and 8, often obey invariants that can be precisely captured by nomanei¢arsive
datatypes. Unfortunately, processing such datatypes requires polymorphic recutsicim,
causes difficulties for type inference and hence is disallowed by most fungtimgrhmming
languages. We can usually sidestep this restriction by rewriting theypatato be uniform,

but then the types fail to capture the desired invariants and the type systenmoivcatch

bugs involving violations of those invariants. All in all, we believe the compsentaken by
Haskell 1.3 [P 96] is best: allow polymorphic recursion in those cases where the programmer
explicitly provides a type signature, and disallow it everywhere else.

Higher-order, Recursive Modules The bootstrapped heaps of Section 7.2.2 (see also [BO96])
demonstrate the usefulness of higher-order, recursive modules. In languages Sterdasd

ML that do not support higher-order, recursive modules, we can often sidestepgtristion

by manually inlining the desired definitions for each instance of bootstrapping.|¥;leaw-

ever, it would be cleaner, and much less error-prone, to provide a single maduoiedule
transformation that performs the bootstrapping. In the case of bootstrapped heams Feiy-

ton Jones and Jan Nicklisch [private communication] have recently showndiomaptement

the desired recursion using constructor classes [Jon95].

Pattern Matching Ironically, pattern matching — one of the most popular features in func-
tional programming languages — is also one of the biggest obstacles to the wides@ead us
of efficient functional data structures. The problem is that pattern matchmgrig be per-
formed on data structures whose representation is known, yet the basic sedtvgameering
principle of abstraction tells us that the representation of non-trivial datatates should be
hidden. The seductive allure of pattern matching leads many functional progrartoradran-

don sophisticated data structures in favor of simple, known representatidnaslists, even
when doing so causes an otherwise linear algorithm to explode to quadratic oxpesstial

time.

Views[Wad87] and their successors [BC93, PPN96] offer one way of reconciling the con-
venience of pattern matching with the desirability of data abstractionad$-patterns are
just a special case of views. Unfortunately, views are not supported by any fuagional
programming language.
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Implementation Finally, we note that functional catenable lists are an essential ingredient
in the implementation of certain sophisticated control structures [FWED8Be advent of
new, efficient implementations of catenable lists, both here and in [KT9Kesthe efficient
implementation of such control structures possible for the first time.

9.4 Open Problems
We conclude by describing some of the open problems related to this thesis.

e What are appropriate empirical measurements for persistent data stakct8tandard
benchmarks are misleading since they do not measure how well a data structure sup-
ports access to older versions. Unfortunately, the theory and practice of behkalgna
persistent data structures is still in its infancy.

e For ephemeral data structures, the physicist’'s method is just as powerfid bariker’s
method. However, for persistent data structures, the physicist’s methodrappdze
substantially weaker. Can the physicist's method, as described in Sediohe3im-
proved and made more widely applicable?

e The catenable deques of Section 8.5 are substantially more complicated tluatetiie
able lists of Section 7.2.1. Is there a simpler implementation of catenafpleed€loser
in spirit to that of catenable lists?

¢ Finally, can scheduling be applied to these implementations of catenablaridtde-
ques? In both cases, maintaining a schedule appears to take moég thdaime.



Appendix A

The Definition of Lazy Evaluation in
Standard ML

The syntax and semantics of Standard ML are formally specifidtheDefinition of Standard

ML [MTH90]. This appendix extends tHRefinitionwith the syntax and semantics of the lazy
evaluation primitives$-notation) described in Chapter 2. This appendix is designed to be read
in conjunction with theDefinition it describes only the relevant changes and additions.

Paragraph headers sucH28 Grammar (8,9)] refer to sections within thBefinition The
numbers in parentheses specify the relevant pages.

Al Syntax

[2.1 Reserved Words (3)] $s areserved word and may not be used as an identifier.

[2.8 Grammar (8,9)] Add the following productions for expressions and patterns.

exp ::= $exp and pat ::= $pat

[Appendix B: Full Grammar (71-73)] Add the following productions for expressions and
patterns.

exp ::= $exp and pat ::= $pat

These productions have lower precedence than any alternative form (i.ear tagien the lists
of alternatives).
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A.2 Static Semantics

[4.4 Types and Type functions (18)] = susp does not admit equality.
Remark: This is an arbitrary choice. Allowing an equality operator on suspensions that

automatically forces the suspensions and compares the results would alsediealde, but
would be moderately complicated. &

[4.7 Non-expansive Expressions (20)] &xpressions are non-expansive.

Remark: The dynamic evaluation of&expression may in fact extend the domain of memory,
but, for typechecking purposes, suspensions should be more like functions than references.

[4.10 Inference Rules (24,29)] Add the following inference rules.

Ckexp=r and CFpat=r
C + $exp= T susp C + $pat= 7 susp

[4.11 Further Restrictions (30)] Because matching agains$gattern may have effects (in
particular, may cause assignments), it is now more difficult to deterrhmatches involving
both suspensions and referencesigeglundantandexhaustiveFor example, the first function
below is non-exhaustive even though the first and third clauses appear to daeses and
the second is irredundant even though the first and fourth clauses appear to overlap.

fun f (reftrue, ) =0 fun f (reftrue, ) =0
| f (ref false,$0) = 1 | f (ref false,$0) = 1
| f (ref false,_) =2 | f (ref false,_) =2

| f (ref true, _) =3
(Consider the execution &f (r, $(r : = true; 1)) wherer initially equalsr ef f al se.)

[Appendix C: The Initial Static Basis (74,75)] ExtendTj to includesusp, which has arity
1 and does not admit equality.

Addf or ce to VE, (Figure 23), where

force— V' a’a susp— 'a
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A.3 Dynamic Semantics

[6.3 Compound Objects (47)] Add the following definitions to Figure 13.

(exp £) € Thunk= Exp x Env
fin

mem € Mem= Addr — (Val U Thunk)

Remark: Addresses and memory are overloaded to represent both references andisaspens
The values of both references and suspensions are addresses. Addressestirepreser-
ences are always mapped to values, but addresses representing suspensibasmapped

to either thunks (if unevaluated) or values (if evaluated and memoized). dtie s2mantics
ensures that there will be no confusion about whether a value in memory represseteace

or a memoized suspension. &

[6.7 Inference Rules (52,55,56)] Add the following inference rule for suspending an expres-

sion.
a ¢ Dom(memof s)

s, E-$exp=a,s+ {a— (exp F)}

Extend the signatures involving pattern rows and patterns to allow excepbidesraised
during pattern matching.
E,r F patrow=- VE/FAIL /p

FE,v F pat= VE/FAIL/p
Add the following inference rules for forcing a suspension.

s(a)=w s, E,v I pat= VE/FAIL, s’
s, E,at $pat= VE/FAIL, s’

s(a)=(expE') s, E'Fexp=v,s s +{a— v}, F vt pat= VE/FAIL,s"
s, E,at $pat= VE/FAIL,s"

The first rule looks up a memoized value. The second rule evaluates a suspensioenaod
izes the result.

Finally, modify Rule 158 to reflect the fact that matching against a pattesnahange the
state.
s(la) =w s, E,v I atpat= VE/FAIL, s’

s, E,at ref atpat= VE/FAIL, s’

(158)
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Remark: The interaction between suspensions and exceptions is specified by the exception
convention. If an exception is raised while forcing a suspension, the evaludtibat sus-
pension is aborted and the result is not memoized. Forcing the suspension a seeowdltim
duplicate any side effects it may have. A reasonable alternative would ibeinoize raised
exceptions, so that forcing such a suspension a second time would simply tieeaisemoized
exception without duplicating any side effects. &

[Appendix D: The Initial Dynamic Basis (77,79)] Extend £ with the following declara-
tion:

fun force $x) = x

A.4 Recursion

This section details the changes necessary to support recursive suspensions.

[2.9 Syntactic Restrictions (9)] Lift the syntactic restriction on ec to allow value bindings
of the formvar = $ expwithinr ec.

[6.7 Inference Rules (54)] Modify Rule 137 as follows.

s, B F valbind = VE, s VE' = RecVE s" = SRe¢VE', s")

s, E Frec valbind = VE', s" 137

where
SRec: VarEnv x State— State

and
e ensof SRe¢VE, s) = ensof s
e Dom(memof SRe¢VE, s)) = Dom(memof s)
e If « ¢ RanVE), then SReQVE, s)(a) = s(a)

e If « € RanVE) ands(a) = (exp E), then SRe(VE, s)(a) = (exp E + VE)
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The SRec operator defines recursive suspensions by “tying the knot” through the memery. Not
that in the definition of SRec, it will never be the case that Ran(VE) ands(a) ¢ Thunk,
because the suspension could not have been forced yet.

Remark: In the presence of recursion, a suspension might be memoized more than once
if evaluating its body somehow forces itself. Then, the inner evaluation migituge and
memoize a value that is subsequently overwritten by the result of the outeagga. Note,
however, that evaluating a suspension that forces itself will not terenunaless side effects

are involved. If desired, the “blackhole” technique [Jon92] can be used to datdctscular
suspensions and guarantee that a given suspension is only memoized once. &
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